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ABSTRACT
Write amplification is a critical factor limiting the random
write performance and write endurance in storage devices
based on NAND-flash memories such as solid-state drives
(SSD). The impact of garbage collection on write amplifica-
tion is influenced by the level of over-provisioning and the
choice of reclaiming policy. In this paper, we present a novel
probabilistic model of write amplification for log-structured
flash-based SSDs. Specifically, we quantify the impact of
over-provisioning on write amplification analytically and by
simulation assuming workloads of uniformly-distributed ran-
dom short writes. Moreover, we propose modified versions
of the greedy garbage-collection reclaiming policy and com-
pare their performance. Finally, we analytically evaluate
the benefits of separating static and dynamic data in reduc-
ing write amplification, and how to address endurance with
proper wear leveling.

Categories and Subject Descriptors
B.3.3 [Memory Structures]: Performance Analysis and
Design Aids—formal models, simulation; C.3 [Special-pur-

pose and application-based systems]: Real-time and
embedded systems; D.4.2 [Storage Management]: Gar-
bage collection

General Terms
Design, Performance, Algorithms

Keywords
Solid State Drives, Solid State Storage Systems, Write Am-
plification, Flash Memory

1. INTRODUCTION
The advent of solid-state drives (SSD) based on NAND-

flash memories is currently revolutionizing the primary stor-
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age computer architecture, ranging from notebooks to en-
terprise storage systems. These devices provide random I/O
performance and access latency that are orders of magnitude
better than that of rotating hard-disk drives (HDD). More-
over, SSDs significantly reduce power consumption and dra-
matically improve robustness and shock resistance thanks to
the absence of moving parts.

NAND-flash memories have unique characteristics that
pose challenges to the SSD system design, especially the
aspects of random write performance and write endurance.
They are organized in terms of blocks, each block consist-
ing of a fixed number of pages, typically 64 pages of 4 KiB
each. A block is the elementary unit for erase operations,
whereas reads and writes are processed in terms of pages.
Before data can be written to a page (i.e., the page is pro-
grammed with that data), the page must have been erased.
Moreover, NAND-flash memories have a limited program-
erase cycle count. Typically, flash chips based on single-level
cells (SLC) sustain 105 and those based on multi-level cells
(MLC) 104 program-erase cycles.

Flash memory uses relocate-on-write – also called out-of-
place write – mainly for performance reasons: If write-in-
place is used instead, flash will exhibit high latency due to
the necessary reading, erasing, and reprogramming (writing)
of the entire block in which data is being updated.

However, relocate-on-write necessitates a garbage-collec-
tion process, which results in additional read and write oper-
ations. Whereas the reclaiming policy that selects the blocks
to garbage-collect in Sprite LFS [13] was based only on the
amount of free space to be gained, the policy defined in [10]
also included the time elapsed since the last writing of the
block with data. In general, the objective is to keep at a
minimum the number of valid pages in the blocks selected
for garbage collection. The efficiency of garbage collection
could, for instance, be improved by delaying those blocks
holding data being actively invalidated. The number of read
and write operations resulting from garbage collection de-
pends on the number of valid pages in the block.

In contrast to disks, flash memory blocks eventually wear
out with progressing number of program-erase cycles until
they can no longer be written. Wear-leveling techniques are
therefore used to exhaust the program-erase cycles available
(i.e., the cycle budget) of as many blocks as possible, in
order to serve the largest number of user writes (or host
writes), thereby maximizing endurance. Their performance
is measured by the total unconsumed cycle budget left when
garbage collection can no longer return a free block. Note



that retention is another issue that can be addressed by wear
leveling as well.

Assuming independent and uniformly distributed random
short writes, the optimal wear-leveling technique consists
of wearing out all blocks over time as uniformly as pos-
sible. This can be achieved, for instance, by minimizing
the delta between maximum wear and average wear over all
blocks, with this delta corresponding to the wear-leveling
inefficiency as described in [6].

In reality, host writes are not uniformly distributed. If a
distinction can be made between blocks with static data (i.e.,
addresses to which the host only infrequently rewrites data)
and blocks with dynamic data (with frequent rewrites), wear
leveling can benefit from treating these two types of blocks
differently instead of wearing them out uniformly. Hence,
in this case, wear-leveling performance not only depends on
the unconsumed cycle budget, but also on the number of
cycles wasted by repeatedly moving unmodified static data.

In all cases, wear leveling causes additional read and write
operations. Therefore, in flash, write amplification corre-
sponds to the additional writes caused by garbage collec-
tion and by wear leveling. Hence, the total number of user
writes that can be served depends on the total cycle budget
available, write amplification, and the eventual unconsumed
cycle budget due to wear-leveling inadequacy.

Finally, the management of out-of-place updates involves
a mapping between logical block1 addresses (LBA), i.e., the
user (or host) address space, and physical block addresses
(PBA). This mapping may be used to distinguish dynamic
from static data.

In the remainder of this paper, we present a probabilistic
analysis of write amplification in log-structured flash-based
SSDs. The analysis assumes a windowed greedy reclaiming
policy, which is a variation of the age-threshold-based policy
described in [10]. Write amplification is derived assuming
4 KiB independently and uniformly distributed user write
requests. The analytical results are confirmed by simulation
results. Analytical results are then extended to the case in
which static and dynamic data can be distinguished.

This paper is organized as follows. Section 2 reviews the
relevant work in garbage collection and flash wear leveling.
In Section 3, we introduce an analytical model based on a
probabilistic approach and then continue with a description
of our flash storage simulator in Section 4. Based on these
two sections, we present essential analytical and simulation-
based numerical results that allow us to quantify write am-
plification in Section 5 before we extend our analytical model
to the more realistic scenario with static and dynamic data
(Section 6). Finally, a discussion of our results concludes
the paper.

2. RELATED WORK
To group I/O operations and improve performance, log-

structured file systems, arrays, and disks [12, 13, 16, 9] all
write new as well as updated data to new locations instead
of writing it in place, and hence also depend on efficient

1Note, that the term “block” used here does not correspond
to a flash memory block. It is a term used in HDDs, referring
to the smallest addressable data unit which typically has
512 Bytes. In the flash context, it refers to a fraction of a
page.

garbage collection. Kawaguchi et al. [7] showed that in
a flash-based log-structured file system garbage collection
has a significant impact on performance when utilization
is high. A common strategy for garbage collection is the
greedy reclaiming policy [3], in which the block that has the
largest number of invalid pages will be recycled. However,
as garbage collection also contributes to using up the cycle
budget of blocks, it is usually beneficial to combine it with
wear leveling.

Various such combined algorithms have been proposed.
The one described by Chang et al. [3] avoid unnecessary
reclamations in garbage collection and combines this with
wear leveling in the form of a periodical task that performs
a linear search for blocks with a small erase count to iden-
tify blocks to be recycled. Agrawal et al. [1] describe an-
other combined algorithm called modified greedy garbage-
collection strategy. The algorithm generally selects the block
with the most invalid pages for garbage collection, while
avoiding a large spread in the remaining cycle budget among
all blocks and limiting the frequent movement of static data.
Such a strategy is referred to as static wear-leveling in [14,
4] and exhibits a four fold improvement in endurance over
a strategy that does not relocate static data (assuming 75%
of dynamic and 25% of static data). Ben-Aroya et al. [2]
performed a worst-case competitive analysis with focus on
endurance-based randomized algorithms. To achieve nearly
ideal endurance, they suggest separating garbage collection
from wear-leveling.

Initially, write amplification has been studied by Rosen-
blum et al. [13] for log-structured file systems as a func-
tion of disk utilization. Whereas the Sprite LSF analysis
distinguishes between hot and cold data (including reads
and writes), we instead distinguish between static and dy-
namic data as only writes contribute to write amplification.
Furthermore, the Sprite LSF write-cost comparison includes
time for seeks, rotational latency, and cleaning costs. There-
fore, our results can only be qualitatively compared to those
from Sprite LSF.

Although some of the flash memory papers briefly men-
tion performance impacts from garbage collection and wear
leveling, we did not find a detailed analysis of write ampli-
fication in flash-based storage systems and how it relates to
parameters, such as the spare factor, in the literature.

3. WRITE AMPLIFICATION ANALYSIS
In this section, we first introduce a generic architecture

for a log-structured SSD with a windowed greedy reclaiming
policy for garbage collection and then propose a probabilistic
approach for analyzing the write amplification factor in log-
structured flash-based SSDs based on this policy.

3.1 Architecture of a Log-structured SSD
The generic architecture for a log-structured SSD consist-

ing of a controller with some DRAM and a pool of flash
memory chips can be described as follows: the entire flash
memory space is organized in terms of blocks, with each
block containing a fixed number np of pages, typically np =
64, and the size of each page sp being 4 KiB. User data
pages, addressed by LBAs, are written to the free space of
flash memory, addressed by PBAs. When a flash memory
page has been written, it is no longer available for writ-



ing until its block is erased. The controller maintains an
LBA-PBA map, and when a page addressed by an LBA is
updated, a free flash memory page will be allocated to store
the new data. The corresponding LBA entry in the LBA-
PBA map will be modified accordingly: the LBA is mapped
to the new PBA and the old PBA is marked as invalid data
page. Note that the LBA-PBA map can be maintained in
DRAM or in flash memory. However, the latter causes ad-
ditional read and write operations and hence contributes to
write amplification. As this is implementation specific, these
additional operations are not taken into account here. Also,
the implementation of an efficient LBA-PBA map is out of
scope of this paper.

If the write workload is strictly sequential in the sense that
all data is updated in sequential order of LBAs, there is no
need for complex garbage collection because flash blocks are
being invalidated block by block as write requests proceed;
one can simply erase the block containing no valid data and
thus avoid the burden of relocating valid data pages.

In the case of a random write workload, and after process-
ing a large number of page writes, the number of free pages
in flash memory becomes low. Garbage collection then re-
claims space blocked by invalid pages that are scattered over
blocks. Once a block to be reclaimed has been selected, all
valid pages in that block are relocated into a new block with
free pages. The selected block can then be erased, and all
np pages on that block become free space again to accom-
modate new writes. The efficiency of garbage collection is
measured by write amplification defined as follows:

Definition 1 (Write Amplification).
In a log-structured system, write amplification, A, due to
garbage collection is defined as the average of actual number
of page writes per user page write.

Figure 1 illustrates the concept of write amplification.
Suppose that I pages have been rewritten and hence have
been invalidated in a block before this block is selected for
garbage collection. The block still has V valid pages, where
V + I = np, that have to be relocated to another block be-
fore the block can be erased and reclaimed. In other words,
in order to (re)write I user pages, the number of physical
pages that have to be written is V + I . Therefore the write
amplification is

A =
V + I

I
= 1 +

V

I
. (1)

Note that in (1) the term V/I is the extra write requests
due to relocation of valid pages, which we define as the write
amplification factor.

Definition 2 (Write Amplification Factor).
The write amplification factor, Af , is defined as the ratio
of the average number of writes used to relocate pages to
the average number of free pages gained through the garbage
collection procedure.

From this definition, the write amplification factor can be
written as

Af =
V

I
. (2)

A non-zero write amplification factor means that each user
page write causes extra writes to relocate pages, leading on

Figure 1: The concept of write amplification.

average to a total of (1 + Af ) page writes. Write amplifica-
tion deteriorates not only user random write performance,
but also endurance. For a strictly sequential write workload,
the write amplification factor is zero, i.e., there is no write
amplification at all.

The reclaiming policy should attempt to minimize write
amplification. Here we consider the popular greedy policy
that waits until almost all free pages are exhausted and then
selects the block with the least number of valid pages to be
garbage-collected. The rationale behind this policy is that:
The longer the reclaiming process can be delayed, the fewer
valid pages will be in the block selected, hence minimizing
the write amplification. The greedy reclaiming policy leads
to the lowest contribution to write amplification with inde-
pendently, randomly, uniformly distributed writes.

A critical factor that impacts the performance of garbage
collection is over-provisioning. The idea of over-provisioning
is to let the user use only a portion of the total capacity.
Thus, increasing the amount of over-provisioning leads to
an increase of the number of invalid pages, which improves
the overall efficiency of garbage collection.

To measure the effect of over-provisioning, we introduce
two terms, namely, the over-provisioning factor and the spare
factor.

Definition 3 (Over-Provisioning/Spare Factors).
Suppose an SSD with a raw storage capacity of t blocks of
which the user can only use a part, say, u blocks, and where
u ≤ t. Then the over-provisioning factor, Of , is defined
as Of = t/u, and the spare factor, Sf , is defined as Sf =
(t − u)/t.

Note that the over-provisioning factor and the spare factor
can be used interchangeably. One can readily deduce that

Sf = 1 −
1

Of

, (3)



Figure 2: Schematic diagram of garbage collection

with the windowed greedy reclaiming policy.

and the relationship between u and t can be represented
through Sf :

u = t(1 − Sf ). (4)

Until all flash block have been written, the unused user
LBA space can be exploited as a form of over-provisioning:
as the LBA space is progressively used, the over-provisioning
factor and performance decrease. However, this is not suit-
able for enterprise SSDs, as well as when flash is used as a
cache.

3.2 The Windowed Greedy Reclaiming Policy
Figure 2 shows how flash blocks are utilized and how the

free-space-reclaiming process proceeds. A pool of free blocks
is used to serve both user write requests and relocate re-
quests. Occupied blocks are maintained in a queue accord-
ing to the order in which they have been written. An index is
assigned to each position in the queue as shown in Figure 2,
with the oldest block having index zero. Garbage collection
using the greedy reclaiming policy only starts once t − r
blocks are occupied, with r blocks reserved so that garbage
collection can operate in parallel. Normally r is very small
compared to t.

The greedy reclaiming policy however would consume too
many CPU cycles to select the block with the least number
of valid pages from all t− r blocks, because each host write
may decrease the number of valid pages in already written
blocks. As a result, this would require to constantly update
the number of valid pages in all t−r blocks. A more practical
alternative is to restrict the selection process to the oldest
s(s < t − r) blocks only (i.e., the s blocks with the lowest
indices), as they are more likely to contain the least number
of valid pages. Here s is referred to as the window size for
applying the reclaiming policy. This windowed greedy policy
can be seen as a variation of the age-threshold-based policy
described in [10], but, in contrast to the latter we consider
the oldest s blocks instead of blocks older than a given age
threshold. Our scheme can be seen as adaptive version of the
age threshold scheme, albeit with a lower implementation

complexity. Note that for s = 1 this scheme reduces to the
circular buffer scheme.

3.3 Probabilistic Analysis
For analysis purposes, we assume that each write request

has a fixed request size of a single page, with the address fol-
lowing a uniform random distribution in the space [0, unp −

1].
Without loss of generality, we assume that pages in the

occupied blocks have been written sequentially within the
block. Suppose that block b within the window from block
0 to block (s − 1) has the least number of valid pages and
is selected for garbage collection. According to definition 2,
the write amplification factor can be calculated as the aver-
age of valid pages divided by the average of invalid pages in
the selected block b. Denote by p∗

0, p∗

1, . . ., p∗

np
the proba-

bilities that the selected block b has 0, 1, . . ., np valid pages,
respectively. The write amplification factor, Af , can then
be computed by

Af =

np
P

k=0

kp∗

k

np −

np
P

k=0

kp∗

k

. (5)

If all s blocks only have valid pages, the greedy reclaiming
policy will anyway garbage collect one of those blocks in
order to shift the window and eventually reach blocks with
invalid pages to be reclaimed. Variations of the greedy policy
that efficiently address this issue are under investigation.

Suppose V (0), V (1), . . ., and V (s−1) are discrete random
variables of the number of valid pages in blocks 0, 1, . . .,
s − 1. Denote by p(∀jV

(j) > k) the probability that the
number of valid pages in each block j, 0 ≤ j ≤ s − 1, is
larger than k, namely,

p(∀jV
(j) > k) = p(V (0) > k, V (1) > k, · · · ,

V (s−1) > k), (6)

where 0 ≤ k ≤ np. For s << u, which is typically the case in
a practical system, we can assume that the joint probability
from Equation (6) can be approximated by the marginal
probabilities2

p(∀jV
(j) > k) = p(V (0) > k, V (1) > k, · · · ,

V (s−1) > k)

= p(V (0) > k)p(V (1) > k) · · ·

p(V (s−1) > k) (7)

=
s−1
Y

j=0

p(V (j) > k). (8)

Observe that p(∀jV
(j) > k − 1) can be rewritten as

p(∀jV
(j) > k − 1) = p∗

k + p∗

k+1 + · · · + p∗

np
, (9)

2In general, the V (j) are not independent because the to-
tal number of valid pages cannot be more than unp. Also,
the cleaning process may tend to produce correlated val-
ues by cleaning pages with certain characteristics. Likewise,
higher-level file system operations might cause similar de-
pendencies.



so that one can compute p∗

k by

p∗

k = p(∀jV
(j) > k − 1) − p(∀jV

(j) > k), (10)

for k=1, . . ., np − 1. For k = 0,

p∗

0 = 1 − p(∀jV
(j) > 0),

and for k = np,

p∗

np
= p(∀jV

(j) > np − 1),

as p(∀jV
(j) > np) = 0.

We now proceed to evaluate p(V (j) > k), for k = 0, 1, . . .,
np − 1. Denote by pj(m) the probability that the j-th block
has m valid pages, then

p(V (j) > k) = 1 −

k
X

m=0

pj(m). (11)

To evaluate pj(m), we first consider pi,j , the probability of
the i-th page on the j-th block being valid, where 0 ≤ i ≤

np −1 and 0 ≤ j ≤ s−1. Suppose that h(j), a function of j,
is the number of pages being written after the j-th block up
to the (t− r−1)-th block, at which point garbage collection
is triggered, satisfying our initial assumption that the LBA
of each page write is randomly, uniformly and independently
distributed. In other words, the i-th data page on the j-th
block has a probability 1/unp of being invalidated indepen-
dently by each of h(j) + (np − i − 1) page writes. Thus pi,j

can be computed as

pi,j =
`

1 −
1

unp

´[h(j)+(np−i−1)]

≈
`

1 −
1

unp

´h(j)
, (12)

where the approximation has been made because np − i − 1
is much smaller than h(j). As in its approximation pi,j is
independent of i, we denote it by pj , and rewrite (12) as

pj =
`

1 −
1

unp

´h(j)
. (13)

As each page on the j-th block has the same probabil-
ity pj to be valid at the moment of garbage collection, the
number of valid pages on the j-th block follows a binomial
distribution of the parameter np and pj

pj(m) =

 

np

m

!

pm
j (1 − pj)

np−m. (14)

At this point we evaluate h(j) in (13). One should be
aware that h(j) is closely related to how the first physical
appearance of each individual LBA covering the entire user
space is mapped onto flash memory pages on blocks 0, 1,
. . ., (t − r − 1). Note that any of the first-appearing LBA
pages never invalidates any of the pages starting from the
first page of block 0 up to itself. Consequently, as further
discussed below, the first-appearing LBA pages written after
block j do not invalidate it, therefore these pages must be
excluded when calculating h(j).

We consider two phases of operation: the initial and the
steady-state. At the initial phase, it is assumed that be-
fore garbage collection first takes place, u blocks have been
written with LBAs covering the entire user space. In other

words, from block 0 to block u−1, no page invalidates other
pages, as each one corresponds to a different LBA. After
that, each page starts to invalidate the physical page cor-
responding to the same LBA. We refer this model as the
“fixed” model, and h(j) can be evaluated by

h(j) =



(t − r − u)np if j ≤ u − 1
(t − r − j)np otherwise.

(15)

Towards the end of the initial phase, the garbage collection
process will be activated. Subsequently, the initial phase
will gradually evolve to the steady-state phase in which the
first physical appearance of LBAs is now approximated by
the classic “coupon collector” model [5]. One can view each
individual LBA (ranging from 0 to unp − 1) as a different
coupon, arriving independently and uniformly when a data
page carrying an LBA “coupon” is written. Denote by cj

lba

the total number of LBA coupons collected between blocks 0
and j. Note that cj

lba is a random variable, thus we evaluate

its expectation E(cj

lba). Using a special case of the Gener-
alized Birthday Problem [8] called the balls and bins model
as explained in Appendix A, we obtain

E(cj

lba) = unp

“

1 −
`

1 −
1

unp

´[(j+1)np]
”

. (16)

Note that the balls and bins model only approximates the
actual steady-state behavior. This can be observed by con-
sidering the case where j approaches t. It can be shown that
E(cj

lba) does not approach unp as one would expect.
Here, h(j) can be evaluated by subtracting the number of

remaining LBAs, unp −E(cj

lba), that are yet to appear after
the j-th block has been written, from the total number of
pages subsequently written after j, to cover the entire user
space.

h(j) = max

„

0, np(t − r − j − 1) −

unp

“

`

1 −
1

unp

´[(j+1)np]
”

«

(17)

The above equation ensures that h(j) does not take negative
values when j approaches t.

To compute the write amplification factor, one can apply
(5), (8), (10), (11), (13), (14), and (15) under random page-
by-page write workload and the greedy reclaiming policy,
using the fixed model, or apply (5), (8), (10), (11), (13),
(14), and (17), using the coupon collector model.

4. DESCRIPTION OF THE SIMULATOR
Our flash simulator is an event-driven simulator written

in Java that consists of roughly 10k lines of code. Figure 3
illustrates the architecture of the simulator. Different types
of flash memories (SLC and MLC) are supported, and their
read, program, and erase as well as page and block character-
istics are configurable. Flash chips are modeled according to
ONFi 1.0 [11]. Reads and writes are simulated without ac-
tual data being transferred. Multiple flash chips are grouped
into channels, and multiple channels are attached to a flash
controller.

The controller is configurable, and different types of con-
trollers are available that support key functionalities such
as wear leveling, garbage collection, bad block management,



Figure 3: Overview of the simulator.

and error-correction codes (ECC). The controller uses a log-
structured LBA-to-PBA map.

Reading and writing to the simulated flash storage device
can be done using different types of workloads, such as uni-
form, exponential, and ZIPF distribution with configurable
read/write ratios.

The simulator allows us to simulate system-level behav-
ior of flash-based storage devices. More specifically, write
amplification and endurance can be measured as shown in
the next section. In the future, we plan to extend the sim-
ulator with further functionalities such as various types of
reliability protection schemes complementing the ECC.

The simulator takes into account how chips are connected
to the flash controller by the number of channels used, which
has a significant impact on the I/O performance of the sys-
tem, but does not affect the write amplification analysis.

Certain flash memories support a copy-back mode, a fea-
ture that allows data to be to moved in the chip using a
simple command, without going through the controller and
hence unnecessarily wasting bandwidth and processing cy-
cles. The copy-back mode is mainly used for static wear
leveling, which can be neglected with uniformly-distributed
host writes used for the analysis in Section 3. Hence it is not
supported by the simulator. In reality, when static and dy-
namic blocks can be distinguished, static wear leveling will
have an impact on write amplification, and, the copy-back
mode can, to some extent, reduce the impact of relocations
on write amplification but it cannot be used to relocate data
across chips.

5. ANALYTICAL AND SIMULATION RE-
SULTS

This section presents numerical results obtained by apply-
ing the analytical results from Section 3 as well as simulation
results of the steady state. As soon as all blocks have been
used once and garbage collection starts, write amplification
appears and rapidly reaches its steady state average. The
steady state ends once the cycle budget is exhausted and
the chips must be replaced.

Figure 4 shows how the write amplification factor evolves
as a function of the spare factor under random page writes
and the greedy reclaiming policy. According to the param-
eters in Table 1, three curves are shown: the simulation
results, the analytical results under the fixed model, and
the analytical results using the coupon-collector model. It
can readily be seen that the analytical results using the

Table 1: Parameters used to compute the write am-

plification factor under random page-by-page write

workload and the greedy reclaiming policy.

Parameter Notation Value

Total number of blocks t 400000
Reserved number of blocks r 10
Number of pages per block np 64
Window size for applying s 500

reclaiming policy

fixed model are indistinguishable from those results using
the coupon collector model. It can also be seen that the
analytical results match the simulation results very well, ex-
cept for the noticeable differences at low (< 0.2) spare fac-
tor. This suggests that for a sufficiently large spare factor
both the fixed and the coupon collector model can be used
to compute the write amplification factor with the greedy
reclaiming policy.
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Figure 4: Write amplification factor versus spare

factor under random page-by-page write workload

and the greedy reclaiming policy.

Next, we examine the impact of the window size, s, on the
write amplification factor. A small s is appealing in terms of
reducing computational cost and latency, while potentially
worsening the write amplification factor. Therefore, s has
to be chosen judiciously. Figure 5 shows the differences in
the write amplification factor between the ideal case (with
its selection window for garbage collection covering all occu-
pied blocks) and two cases covering only the oldest s blocks,
where s = 500 and s = 100. It is interesting to remark that a
relatively small s is sufficient to achieve a write amplification
factor close to the ideal case, particularly for a large spare
factor. Finally, in the extreme case of the circular buffer,
s = 1, we observed that the discrepancy between simulation
and analytical results is larger.
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Figure 5: Analytical results of the impact of the

window sized of garbage collection on the write am-

plification factor.

6. SEPARATING DYNAMIC AND STATIC
DATA

In this section we apply the analytic framework developed
in Section 3 to the practical situation of static and dynamic
data.

We consider the following two scenarios: In the first sce-
nario, the flash controller ignores whether a page is static
or dynamic, and thus dynamic and static pages are stored
in a inter-mixed fashion into flash blocks. This scenario is
called “mixed” scenario. In the second scenario, we assume
the flash controller knows (either a priori or by learning)
whether an LBA is dynamic or static, and then places static
and dynamic pages into distinct pools of blocks, as shown
in Figure 6. This scenario is thus called the “separated” sce-
nario. The actual task of identifying static and dynamic data
can be achieved by collecting statistics on writes for each
LBA. We believe that an adapted version of the method
introduced in [13] can achieve reasonable results. This is
however out of scope in this paper.

Furthermore, we assume that whenever a block in the dy-
namic pool exhausts its cycle budget far more than the av-
erage of the other blocks, the block is swapped with a block
in the static pool that holds static data pages only. As the
swap process is done only a limited number of times for each
block holding static data during its lifetime, we can neglect
the additional write amplification caused by the swap pro-
cess.

Denote by us the total number of blocks that would be
used to hold static data pages. For the mixed scenario, (13)
is rewritten as

pj =
us

u
+ (1 −

us

u
) ·
`

1 −
1

(u − us)np

´h(j)
, (18)

and then we can apply (5), (8), (10), (11), (14), (15), and
(18) to compute the write amplification factor under random
page-by-page write workload and the greedy reclaiming pol-

Figure 6: Schematic diagram of garbage collection

with greedy reclaiming policy in the“separated”sce-

nario.

icy, using the fixed model. The reason that we use the fixed
model in the mixed scenario is because of its simplicity.

Figure 7 shows the impact of the existence of static data
pages on write amplification, with the parameters taken
from Table 1. The write amplification factor worsens sig-
nificantly if there is a considerable portion of static data
pages and over-provisioning cannot effectively reduce the
write amplification factor to zero. The reason is that static
data pages are scattered among blocks randomly, leading to
a significant amount of repeated relocations.

For the separated scenario, (13) should be modified as

pj =
`

1 −
1

(u − us)np

´h(j)
, (19)

because static data pages are excluded from the pool on
which garbage collection is running. Therefore, (17) should
be changed to

h(j) = np(t − us − r − j − 1)

−(u − us)np

`

1 −
1

(u − us)np

´(j+1)np .

(20)

Accordingly, we use (5), (8), (10), (11), (14), (19), and (20)
to compute write amplification factor for the separated sce-
nario.

Figure 8 shows how the write amplification factor can be
improved through intelligent data placement by separating
static data pages from dynamic data pages. The curves are
obtained with the parameters from Table 1. The separation
of dynamic and static data pages turns out to be extremely
effective in taking advantage of the existence of static data
to improve the write amplification factor. The larger the
portion is that the static data accounts for, the smaller is
the write amplification factor, and the less over-provisioning
the SSD requires. These results are qualitatively similar to
those of Sprite LSF [13].
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Figure 7: Impact of static data pages on the write

amplification factor.

7. CONCLUSION
Write amplification is a critical factor that determines the

performance of SSDs, especially with sustained workloads,
as it accounts for the additional system writes that must be
performed for each user write. Furthermore, write amplifi-
cation affects the endurance of SSDs by accelerating the con-
sumption of the program-erase cycle budget of flash blocks.
For example, with an over-provisioning of about 10%, the
write amplification factor can be as high as 4 when dealing
with random short writes, hence accelerating the aging of
an SSD and reducing its sustained performance by the same
factor.

Therefore, this paper focused on write amplification, by
proposing an analytical model of the contribution of garbage
collection to write amplification, which has been validated
by simulation. The important relationship between write
amplification and over-provisioning has been shown, with
analytical as well as simulation results. The ideal greedy
reclaiming policy used for garbage collection, which is opti-
mal in terms of write amplification, has been compared with
the more practical windowed versions that perform accept-
ably well, especially with higher over-provisioning. In the
region of typical spare factors – for instance, the 146 GiB
ZEUSIOPS enterprise SSD from Stec [15] has a spare factor
of 0.43 – and for sufficiently large window sizes, simulation
results match well with our analytical model.

All the results are obtained from workloads consisting of
uniformly-distributed random short writes, for which SSDs
clearly demonstrate their performance advantage over HDDs.
However, in reality, some portions of data are less frequently
updated than others. We have shown that by distinguish-
ing such static from dynamic data and storing it in separate
blocks, the write amplification factor can be improved sub-
stantially: this is particularly evident with larger fractions
of static data or low over-provisioning. Finally, although
wear leveling alone contributes only marginally to write am-
plification as compared with garbage collection, it should be
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Figure 8: The effect of intelligent data placement

on improving the write amplification factor in the

separated scenario.

noted that wear leveling is key to achieving high endurance.
Therefore, designs that efficiently address garbage collection
and wear leveling are critical for SSDs, and will be addressed
in future work.
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APPENDIX

A. APPENDIX: BALLS AND BINS MODEL
Below, we use the balls and bins model to derive (16). The

balls and bins model is briefly described as follows: Suppose
we have m balls and n bins. We want to throw the balls into
the bins, uniformly and independently. We are interested in
the number of empty bins and the number of non-empty
bins.

Consider the probability that a given bin is empty, when
we throw m balls into n bins uniformly and independently.
As each ball hits the first bin with probability 1/n, we have

p(first bin is empty) = (1 −
1

n
)m.

Let Ij be an indicator such that

Ij = 1 if bin j is empty
Ij = 0 otherwise

Moreover, let I=I0 + I1 + . . . + In−1 be the total number of
empty bins, then we have

E[I ] = E[I0 + I1 + · · · + In−1]

= nE[I0]

= n(1 −
1

n
)m

which corresponds to the expectation of the number of non-
empty bins.

If we think of individual LBAs of the space used as bins,
namely, n = unp, and that each page write associated with
an LBA is like throwing a ball into a bin identified by the
LBA with a probability of 1/unp. Then the expected total
number E(cj

lba) of LBAs that first appeared with blocks from

0 to j is the expected number of non-empty bins, yielding
(16).


