
The Potential of Just-in-Time Compilation in Active
Networks based on Network Processors

Andreas Kind, Roman Pletka, Burkhard Stiller

Abstract— Byte-code representations in active networks
provide architectural neutrality and code compactness;
however, the resulting execution speed is typically poor due
to interpretation overhead. This paper shows that the per-
formance of capsule-based active networks can benefit from
compiling active network programs into native network pro-
cessor instructions at traversed routers (just-in-time compi-
lation). A key aspect of the paper is to demonstrate that
just-in-time compilers for active networks can be fast and
small enough for applicability in the datapath of network
processors. The approach has been implemented based on
the SNAP active network framework for the PowerNP net-
work processor.

I. INTRODUCTION

ACTIVE networks break with the traditional network-
ing paradigm in which information is passively for-

warded from node to node. In packet-based active net-
works, routers perform customized computations on pack-
ets flowing through the network. The code for compu-
tations is either carried inside the packets (capsule ap-
proach) [1], [2] or is loaded out-of-band to routers ac-
cording to code references inside packets (plug-in ap-
proach) [3]–[6]. Both approaches allow single packets (or
flows of packets) to actively influence the forwarding pro-
cess through the network. In this respect, active networks
decouple networking services from the underlying infras-
tructure and provide new ways for flexible and customized
service creation in packet-based networks [7].

To provide the advantages of architectural neutrality and
code compactness, typical capsule-based active network
systems represent programs in virtual machine code (byte-
code). This introduction briefly discusses these advantages
and focuses on the key drawback of the byte-code repre-
sentation: execution performance.

Architectural neutrality is achieved by byte-code repre-
sentation if an execution environment to emulate the cor-
responding virtual machine is provided wherever a byte-

Andreas Kind and Roman Pletka are with IBM Zurich Re-
search Laboratory, CH-8803 Rüschlikon, Switzerland. E-mail:
{ank,rap}@zurich.ibm.com

Burkhard Stiller is professor at the Computer Engineering and Net-
works Laboratory (TIK), ETH Zürich, CH-8092 Zürich, Switzerland.
E-mail: stiller@tik.ee.ethz.ch

coded program is executed (i.e., on every router). All spe-
cific characteristics of the underlying router can be hidden
by the virtual machine, so that an active network program
should have the same semantics on every hop of a poten-
tially heterogeneous network.

By representing common operations with a single byte-
code, virtual instruction sets tailored to a specific appli-
cation domain (e.g., active networking) yield significantly
smaller programs than either non-specific virtual instruc-
tion sets or even native instruction sets [8]–[10].

Unfortunately, interpreting byte-coded active network
programs poses serious performance problems [7]. Com-
pared with traditional packet forwarding the processing ef-
fort increases and may jeopardize wire-speed forwarding
at routers. A key requirement for the applicability of active
networking in production networks is to limit the number
of cycles spent for executing an active network program to
the available cycle budget per packet. In backbone routers
this may be no more than a few hundred cycles.

The reason for poor execution speeds of byte-coded ac-
tive network programs is equivalent to the reason for poor
execution speeds of byte-code interpretation in general.
Each instruction has to be mapped (i.e., loaded, decoded,
and invoked) by the interpreter. Interpretation times of
byte-coded applications are thus normally more than ten
times longer than execution of native machine code [11],
[12]. Instruction mapping is necessary with native code
too, but the processor hardware is able to perform the map-
ping much faster and in parallel with instruction execution.

This paper proposes to address performance problems
in capsule-based active networks with just-in-time (JIT)
compilation. Compared to compilation in advance (e.g.,
when the active packet is created), JIT compilation retains
the safety properties of the byte-code language and main-
tains architectural neutrality in networks with heteroge-
nous networking infrastructure. The technique has led to
speed-ups with implementations of general-purpose pro-
gramming languages such as Lisp, Smalltalk, Java, and
Forth (See e.g., [13]). The insufficient performance of
ordinary software-based routers prevents the application
of JIT compilers in active networks. However, with the
advent of network processors this idea becomes reason-
able. The paper describes how the specific characteris-

tics of active network programs can actually facilitate a
fast and lightweight compilation process that matches the
strict processor and memory limits that exist when extend-
ing datapath functionalities using network processors.

We show that for a typical active network framework
the number of processor cycles spent for compiling an in-
dividual instruction is only slightly larger than the number
of cycles needed for interpretation. We measured that na-
tive execution of an individual machine instruction is, on
average, over ten times faster than interpreting an equiva-
lent byte-code from the virtual instruction set. From these
results, it is clear that the performance benefit of JIT com-
pilation increases the more often the processor executes a
part of the program, or even the entire program, without
recompilation. Reuse depends on the amount of recursion
as well as looping in the programs and can be supported
by caching of compiled code either at routers (e.g., reuse
for packets of the same flow) or inside the packet. In the
latter case, compiled code can be reused at each interme-
diate router that supports the same native instruction set.
The idea of JIT compilation has been successfully tested
with implementations of other languages for distributed
programming [13], so that the main contribution of the pa-
per is to show the applicability, potential benefits, and im-
plementation approach of JIT compilation for active net-
works on network processors.

This paper describes the potential for JIT compilation
for a general active network setup, using a dialect of the
SNAP active networking language [14] running on a Pow-
erNP network processor [15]. We show that JIT compila-
tion is feasible in an active router because the compiler is
small enough and fast enough to run in the data plane.

The paper is structured as follows: Section II positions
our approach with respect to other work on active net-
works concerned with improving performance. Section III
presents the active network framework we use for our JIT
compilation approach and describes the active network
language. A key feature of this language is the capabil-
ity to define resource bounds while allowing loops. Sec-
tion IV describes the JIT compilation approach. A quan-
titative comparison of interpretation versus compilation of
active network programs is given in Section V. The paper
draws conclusions in Section VI.

II. RELATED WORK

The objective to improve performance of active net-
works is common to many active network frameworks.
Whereas some related work gives flexibility priority over
performance concerns, e.g., by providing high-level pro-
gramming environments, others trade flexibility for better
performance.

PLAN [16] is a packet language for active networks that
does not require authentication and still executes safely.
The language is simple in order to achieve reasonable per-
formance. PLAN programs share state through service
routines at routers and enable the creation of new proto-
cols without encapsulation. The drawback of PLAN is,
however, unrestricted resource usage. It can be shown that
PLAN programs exist that execute in time exponential to
packet size.

Moore et al. [14] balance the tradeoffs between flex-
ibility, efficiency, and safety with SNAP (Safe Network-
ing with Active Packets). SNAP, a stack-based active net-
working language, evolved from PLAN and is safe with
respect to network resource usage (resource conservation)
and evaluation isolation. The execution of a SNAP pro-
gram can only consume bandwidth, CPU, and memory
resources up to a limit linear to the packet’s length. To
achieve this goal, only forward branches are allowed, i.e.,
loops and recursions are prohibited. Furthermore, pack-
ets may only stay at nodes for a limited amount of time.
This balance of features distinguishes SNAP from other
active networking approaches that are either restricted to
the control plane, have unacceptably low performance, or
sacrifice safety.

The Smart Packets approach for active networking in-
troduced by Schwartz et al. [17] focuses on network man-
agement and monitoring. To simplify management and
consistency of active code, routers do not maintain state
across packets. The packet-transport service is connec-
tionless and smart packets must be self-contained. There-
fore, programs have to be smaller than 1 KB. Security con-
cerns restrict the active code to be executed within a sand-
box environment. A C-like language called Sprocket is
compiled into a machine-independent assembler, which in
turn is assembled into byte-code for a virtual machine. Ex-
tending services dynamically is not feasible with Sprocket
as it would require modifying the virtual machine itself.
The security architecture consists of a maximum number
of instructions to be executed, limited memory usage, and
restricted access to the management information base.

A route taken by Decasper et al. [3] is to address the de-
mand for high-performance active networks with a set of
hardware design measures. The resulting Active Network-
ing Node (ANN) is built with processing engines (CPU
+ FPGA) on each port of a switch backplane and is com-
bined with a suitable operating system (NodeOS) and soft-
ware infrastructure. Active networking instructions are ex-
ecuted in an execution environment on top of the NodeOS.

JIT compilation has been used with the Liquid Software
mobile code approach [18]. The initial idea with compi-
lation in this system was to start compilation while still

receiving the remaining part of a program. The compiler
translates Java byte-code into native instructions (e.g., P5,
SPARC). The Liquid Software compiler has also been used
to construct an active network node using the ANTS [19]
framework. The base ANTS system is statically linked
as native code into the active node. The compiler is then
able to translate Java byte-code carried in capsules into na-
tive code. ANTS, based on the Liquid Software approach,
showed clear performance improvements over the standard
Java-based implementation.

Plezbert and Cytron [20] propose to interleave compila-
tion, interpretation, and native execution of program units
in mobile code systems. They show that this approach can
outperform the speed-up achieved with standard JIT com-
pilation. Their idea derives from the fact that the overall
execution speed of a program does not necessarily benefit
from compiling all program units. It makes more sense to
compile only those program units for which the relation
between compile time and interpretation time indicate a
potential speed-up.

The work described in this paper uses SNAP as a start-
ing point and tries to improve its performance and enhance
its capabilities. In Section III a dialect of SNAP is de-
fined that allows controlled program loops in active net-
work programs. With SNAP, we try to base our work on
an existing active networking framework, so that results
will not depend on specific characteristics of a newly cre-
ated active network framework.

Related work on JIT compilation in active networks
mentioned above is similar to our work. However, this
paper focuses only on capsule-oriented active network
frameworks in the sense that each packet carries its own
program, which typically is far from being, for instance,
a full-fledged Java program. Moreover, the target exe-
cution hardware in our case is a network processor with
a dedicated instruction set and additional specialized co-
processors designed specifically for packet processing. To
our knowledge, no work has been published so far that
investigates the possibilities of JIT compilation for active
networks based on network processors.

III. ACTIVE NETWORKING FRAMEWORK

This section presents the active networking framework
used in this paper. The framework follows the capsule ap-
proach by using active packets that carry data and code to
be executed on each node along the path. The framework
is based on a dialect of SNAP, but allows program loops
under strict resource-bound conditions.

The general model of a router based on network proces-
sors as used in this paper is shown in Figure 1. Forwarding
decisions are usually taken on the ingress side, whereas the

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Interfaces Interfaces

Switch Fabric

EgressIngress

EgressIngress

Network Processor

Fig. 1. Router model with network processors.

egress network processor is mainly involved in scheduling
packet transmission. The processing of an active packet
can be done on the ingress as well as the egress side, so
that two entry points in the active code have to be main-
tained in the packet. If the router has a centralized pro-
cessing unit, as for example on a software-based Linux
router, the egress code has to be placed directly following
the ingress code segment. Such a router can then ignore
the egress entry point, and execute all active code begin-
ning at the ingress entry point. Execution will automati-
cally fall through from ingress to egress code section.

To simplify access to active packet data1, the memory
section consisting of heap and stack is located between the
packet header and the active code section (see Figure 2).
The memory section has a maximum size of 128 bytes.

A. Instruction Set

Unlike general-purpose processors, network proces-
sors often have hardware support for parallel packet pro-
cessing, tree lookups, checksum generation, scheduling,
counting, etc. In an active networking context, these hard-
ware assists should be made available to active programs
in order to accelerate the execution of active code.

As different network processor have different hardware
assists, it is the task of the active networking sandbox
(ANSB) to hide this complexity and to provide the func-
tionality by other means (e.g., general-purpose processor)
if not present. The absence of hardware support has a di-
rect impact on the instruction cost as will be explained later
on.

Our active networking framework uses an extension of
the SNAP [14] instruction set shown in Table I. Core ser-
vice instructions have been added to cover frequently used

1Usually, network processors break packets into separate cells [15],
[21] when a packet is received.

TABLE I
INSTRUCTION CLASSES.

Instruction Class SNAP SNAP Dialect (Modifications and Extensions)
Stack control EXIT, PUSH, POP, POPI, PULL SWAP
Flow control PAJ, JI, BEZ, BNE Backward branches allowed
Heap operations MKTUP, NTH Replaced by RCL, STO
Relational operators EQ, EQI, NEQ, NEQI, GT, LT,

GEQ, LEQ
Arithmetic operators ADD, ADDI, SUB, MOD, NEG, NOT,

AND, OR, ORI, XOR, LSHL, RSHL
Operation on addresses SNET, BCAST
Core services GETSRC, GETDST, FORW, SEND, GETITF, GETNQ, GETENTRY, SETENTRY,

HERE, ISHERE, GETRB, ISNEIGH GETCS, GETLRB
Router services CALL, RREQ

router services, such as accessing the interfaces, queu-
ing classes, and congestion status. Other changes have
been made to simplify heap operations (STO and RCL).
A frequently used stack operation (SWAP) has been added.
GETLRB delivers the local resource bound, as will be ex-
plained later. GETENTRY and SETENTRY allow the ma-
nipulation of the ingress and egress entry points. Heap and
stack elements are 32 bits in size. Instructions are encoded
with 16 bits (seven bits for the opcode and nine bits for
immediate arguments).

B. Resource Bound

To prevent a denial-of-service attack, SNAP uses several
restrictions to limit resource utilization of active packets in
the network. These restrictions consist of a resource bound
derived from the time-to-live (TTL) field and the fact that
SNAP programs use bandwidth, CPU, and memory re-
sources in linear proportion to the packet’s length [22].
Hence, byte-code instructions must execute in constant
and predictable time.

The resource bound as defined in SNAP turns out to be
difficult to respect because, as will be shown later in this
paper, the byte-code instructions differ significantly with

IP src address
IP dst address

Options

Ver Flags Port
Ingress entry Egress entry

Code size Mem size
Heap pointer Stack pointer

... Memory M
...

... Code C0

...

... Payload
...

Fig. 2. Active packet including parts of the IP header. Ingress
and egress entry point to the corresponding starting points
in the code section C0. Heap and stack pointer point to the
current positions in the memory section M .

regard to their execution time. In addition, the limitation
that only forward branches are allowed is too restrictive for
real programs (e.g., the congested hop counter example in
Section III-D would not be feasible). Therefore, a new
definition of the resource bound is introduced here.

Consider two packets with the same packet length. One
of the packets has a large code section and no payload,
the other packet has a large memory and payload section.
The packet with a large code section should get the same
resources for executing active code as the packet with a
large memory and payload section. In other words, as pro-
cessing a packet p takes at most O(|p|) time (|p| denotes
the packet length), payload and memory section can be ac-
counted in the packet’s resource budget in the same way
as code sections. The idea is to use this extra budget for
program loops.

We define a packet p as p = 〈r, C0, C, M〉 using the no-
tation borrowed from [22], where r is the network part of
the resource bound, C0 the full program code, C an arbi-
trary sequence of instructions within C0, and M the mem-
ory size containing heap and stack of the packet.2 The no-
tation −→local describes the execution of an active packet
on a given node ; −→j is a sequence of j reductions. |C|
denotes the number of dynamically executed byte-code in-
structions of the sequence C. The SNAP reduction for
CPU safety

〈r, C0, C, M〉 −→j
local 〈r, C0, ∅, M

′〉 j ≤ |C0|, (1)

no longer holds in the presence of loops because |C| might
be larger than |C0|. Further on, byte-code instructions do
not execute in constant time. Therefore, we define Ĉ as the
sequence of machine dependent CPU cycles correspond-
ing to the byte-code sequence C, and denote |Ĉ| as the
number of machine dependent CPU cycles thereof.

2For simplicity the notation of a packet does not contain all parts of a
packet (e.g., packet header is not represented). Only the relevant parts
are included.

In the following, we show that our extension of the
SNAP resource concept does not violate safety on CPU,
memory, and bandwidth usage. The new resource bound,
a two dimensional vector3, consists of a local part n|p|,
which is linear to the packet size |p|, and a network part
r proportional to the TTL of the packet (n is a con-
stant of proportionality and is measured in instructions per
byte). While the conditions on the network part remain
unchanged, the resource bound for the local part has to be
redefined. The new definition of the local resource bound
is based on a maximum instruction costs wi (derived from
the real execution times) associated with each instruction i

in the byte-code instruction set I .
For an active packet with data D (where D is the entire

packet less the code section C0), the local resource bound
is proportional to the sum of the sizes of code section |C0|
and data |D|. This sum has to be greater than the sum of
all maximum instruction costs wi (in native cycles for the
byte-code i ∈ I independent of any program) executed
for the packet in total. Thus, CPU safety holds under the
following condition

n|p| = n|C0| + n|D| ≥ n|C| = m|Ĉ| = m

|C|
∑

k=1

wC[k] ,

(2)
where C[k] is the k-th instruction in the execution se-
quence. Note that C[k] ∈ I ∀k : 1 ≤ k ≤ |C|. The
factor m is determined by the average instruction cost and
the maximum number of processor cycles the ANSB can
spend on executing active code for a given packet.

We are now going to prove Equation (2). Let |̂ib| be the
number of native (single-cycle) instructions needed to in-
terpret byte-code i ∈ I given that the machine state is such
that the interpreter will take branch b out of the set of all
possible branches Bi for that opcode. During initializa-
tion time, all wi have been chosen to satisfy the following
equation,

max
b∈Bi

|̂ib| ≤ wi ∀i ∈ I (3)

by taking the longest branch possible. |Ĉ[k|b]| is the num-
ber of native instructions in the sequence Ĉ[k] given that
the machine state is such that the interpreter will take
branch b out of the set of possible branches BC[k]. Equa-
tion (3) holds for every instruction i defined in the byte-
code language and is independent of any code sequence
C:

max
b∈BC[k]

|Ĉ[k|b]| ≤ wC[k] ∀k : 1 ≤ k ≤ |C| . (4)

By induction on −→local each instruction i decreases the
available local resources by wi. Therefore the sum over

3The resource bound is defined as a vector because local and network
resources are non-exchangeable for safety reasons.

an arbitrary sequence of instructions is limited by the re-
source bound given in Equation (2):

m ·

|C|
∑

k=1

max
b∈BC[k]

∣

∣ Ĉ[k | b]
∣

∣ ≤ m ·

|C|
∑

k=1

wC[k] ≤ n|p| (5)

�

The less restrictive bound on memory usage defined in
SNAP remains unchanged for the following two reasons:
First, all byte-code instructions can push at most one ele-
ment on the stack or add at most one element to the heap.
Second, using (2), the maximum number of instructions
that can be executed is bounded and the maximum growth
of the stack does not depend on the presence of loops.
Memory safety as well as processing isolation remain un-
changed.

C. Sandbox Environment

The active networking framework supports services that
can be requested from the ANSB. This is very similar
to the plug-in approach [3] but is used here to offer cus-
tomized networking services that are time-constrained and
that do not allow the execution of arbitrary code segments
(e.g., IP address lookup, QoS parameter lookup).

The ANSB provides safe execution of active code be-
cause memory access and resource utilization are strictly
controlled. For example, full read/write access is only
granted for the memory section of the packet, whereas
read access is only given for the packet header. Other data
structures are only accessible using core or router services.
Thus active network code is not allowed to write data at
any location in the packet or ANSB environment.

The ANSB has two separate tasks. The first task is to
control the safe execution of active code of an incoming
active packet. The second task is a background task to
maintain tables. An example of such a table is the con-
gestion status table that keeps track of the occupancy of
the queues on a given output interface. Depending on the
underlying hardware, the ANSB can run either in the con-
trol point or directly on a network processor. The latter
has been implemented and used on a network processor
for this paper.

D. Examples

Active code can vary from simple arithmetics without
loops to complex lookup iterations. Two complementary
examples for active code are given below and are later used
in Section V for illustration and comparison. The first ex-
ample is a loop-free active program that is able to send a
new packet based on the current packet. The second ex-
ample invokes core router services in a loop. The services

are likely to be costly because of tree lookups that have to
be performed.

D.1 Traceroute

The program shown below demonstrates how a simple
traceroute program can be implemented. The actual hop
count and the initial TTL are kept in the packet’s heap.
The hop count is first loaded onto the stack (RCL), in-
cremented by one (ADDI), and then stored (STO). HERE
loads the IP address of the current router onto the stack.
A second packet is then created and sent back (SEND)
to the source containing all the active router IP addresses
traversed so far. The SEND instruction is, however, ex-
pensive because it involves creating a new packet. If the
packet reaches the destination it forwards itself back to the
source (FORWTO) and modifies the ingress and egress en-
try points (SETENTRY) to stop collecting hop information
on the backward path.

L1 RCL hop_count ; Load heap element onto stack
L2 ADDI 1 ; Increment hop count
L3 STO hop_count ; Store the new value
L4 HERE ; Push current hop ip@ onto stack
L5 GETDST ; Destination ip@ from header
L6 ISHERE ; Test if destination reached
L7 BNZ L20 ; Branch to L20 if dest reached
L8 GETENTRY ; Prepare stack for SEND.
L9 PUSH L19 ; Ingress entry offset to L19
L10 LSHL 16 ; Shift left by 16 bits
L11 ORI L19 ; Egress entry offset to L19
L12 ADD ; Add to actual entries
L13 RCL hop_count ; Load stack depth of new packet
L14 RCL init_ttl ; Load initial TTL
L15 GETRB ; Get actual TTL
L16 SUB ; Exact amount of resources used

; up to now that should be given
; to the new packet.

L17 GETSRC ; Get sender IP address
L18 SEND ; Send a new packet back
L19 FORW ; Stop execution and forward

; the packet
L20 PUSH L19 ; New ingress entry at L19
L21 LSHL 16
L22 PUSH L19 ; New egress entry at L19
L23 ADD ; Merge the entry points
L24 SETENTRY ; Adapt entry points for

; return path
L25 GETSRC
L26 FORWTO ; And send the packet back

D.2 Congested Hop Counter

The congested hop counter collects the number of con-
gested queues in active routers along the path through the
network and stores this information on the stack together
with the router’s IP address. In contrast to the previous
example, this program uses a loop (JI) to accumulate
the data and performs tree lookups in the loop to get the
number of queues on the outgoing interface (GETNQ) and
the congestion status (GETCS) of these queues. GETCS

takes the IP address of the interface and the queue in-
dex from, and pushes the congestion status onto the stack.
The congestion status is a two-bit value ranging from zero
(not congested) to three (heavy congestion). The queue
is counted as congested if this value is equal or larger
than two by doing a right shift on the congestion status
(RSHLI). Congestion status information is collected over
three hops, therefore the program needs a memory section
of at least 40 bytes.

L1 HERE ; Current hop IP@ onto stack
L2 PUSH 0
L3 RCL hop_count ; Load hop count onto stack
L4 ADDI 1 ; Increment hop count
L5 PULL 0 ; Duplicate top stack value
L6 RSHLI 2 ; Divide by 4
L7 BNZ L28 ; Stop at 4th hop
L8 STO hop_count ; Store new hop count
L9 GETNQ ; Get number of queues

; for this interface
L10 GEQI 0x8 ; 8 is max loop counter
L11 BNZ L14 ; Are there more than 8 queues
L12 GETNQ ; No
L13 JI L15
L14 PUSH 0x7 ; Yes, take the max
L15 PULL 0 ; Duplicate top stack value
L16 BEZ L28
L17 PULL 0 ; Duplicate top stack value
L18 HERE
L19 SWAP
L20 GETCS ; Get congestion status for

; this queue
L21 RSHLI 1 ; Take the higher cs bits
L22 BEZ L26 ; Do not count if not congested
L23 SWAP
L24 ADDI 1 ; Increment number of congested

; interface
L25 SWAP
L26 SUBI 1 ; Decrement loop counter
L27 JI L15 ; End of loop
L28 FORW

IV. JUST-IN-TIME COMPILER

This section describes a general approach to compiling
active network programs into native instructions of target
network processors.

A. Target Network Processor

The objective of just-in-time (JIT) compilation is to
translate an active network program into a semantically
equivalent program for a given target network processor
just before its execution. Typically, the active network pro-
gram is represented in a stack-oriented byte-code instruc-
tion format, and the output of the compiler is a sequence
of native network processor instructions (Figure 3).

A network processor is a processor that is designed for
fast and flexible packet processing compared to other solu-
tions, like Application Specific Integrated Circuits or gen-
eral purpose processors. It is typically based on an em-

Virtual Machine
(stack-based)

Network Processor
(register-based)

byte-code native machine code

Compiler

Fig. 3. Compilation

bedded processor complex for parallel packet handling in-
cluding co-processors. The generic network processor ar-
chitecture assumed here is inspired by the IBM PowerNP
network processor but is sufficient generic to cover also
other network processor architectures [21], [23]. The min-
imum characteristics of this architecture are as follows:

• 15 scalar word registers (w0 to w14).
• An array register4 initialized with at least the first
64 bytes of the packet being forwarded (ARRAY PKT).
• A mechanism to read more data from the packet into
ARRAY PKT.
• A mechanism to update the packet being forwarded with
data from ARRAY PKT.
• A second array register of at least 64 bytes for temporary
values (ARRAY TMP).
• Write access to instruction memory (INSTRMEM).
• Load and store operations to move data between regis-
ters.
• Standard arithmetic and logical operations on scalar reg-
isters.
• Support for standard comparison.
• Standard control flow operations (e.g., branches, subrou-
tine calls).

Instruction memory access and high memory band-
width, which is required by the given network processor
model, is currently not supported by some network pro-
cessors today [24].

For performance reasons, we assume compilation can-
not be performed on a control processor attached to the
network processor when active packets have to be handled
at wire-speed in the data path. Such a solution would sim-
plify the implementation of the compiler because control
processors are typically equipped with a standard general-
purpose processor, a multitasking operating system, and
convenient development tools. Therefore, the compiler it-
self has to be implemented in the native network processor
instruction set and has to meet the demands of using only
few cycles and showing a small memory footprint.

4Array registers represent data as a collection of bytes.

B. Stack-Based to Register-Based Code

As, in general, network processors are register-based, a
JIT compiler for active networks must translate the, typ-
ically, stack-oriented operation of byte-code instructions
to register-oriented operations of native network proces-
sor instructions. This requirement does not necessarily in-
crease the complexity of the compiler. As the stack inside
an active packet cannot grow very large, all stack posi-
tions can be mapped directly onto a subset of the available
network processor registers. This mapping from relative
stack positions to absolute registers can, however, be de-
termined only during compile-time if it is possible to as-
sociate a fixed stack depth with each source instruction. In
other words, an instruction in a source program must not
be executed at different stack levels (e.g., as it would be
the case with true recursion).

Some sample code fragments illustrate this case. The
first instruction (GETCS) in the following code fragment
could potentially be executed several times at different
stack locations. It is therefore impossible to associate a
fixed register with the load operation.

GETCS ; Load congestion status
DUP ; Duplicate top of stack
BEZ -2 ; Branch if zero

However, in the next code fragment the branch continues
at the same stack level and the compiler can translate the
memory load operation into a native load register opera-
tion.

RCL 0 ; Load congestion status
BEZ -1 ; Branch if zero

Admitting only this kind of recursion (also known as tail-
recursion) in combination with a maximum stack size
limited by the number of available native registers, al-
lows simplifying the JIT compiler while still retaining the
possibility of handling while and for loops. Com-
plex register-allocation schemes, including register flush-
ing into memory, that would complicate the compiler are
not necessary. Active packets that do not follow this re-
quirement are either treated as being standard non-active
packets or handled by the interpreter. The latter case re-
quires that both, interpreter and compiler, are installed on
the network processor.

C. One-Pass Compilation

The source program representation inside active packets
is linearized and in binary format, so that the compilation
process does not include costly compilation phases, such
as tokenizing, syntax/semantic analysis, etc. In fact, it can
be performed in one pass:

1. Initialize byte-code vector pointer.
2. Load byte-code and inlined argument.
3. Store stack level of current source instruction.
4. Jump to instruction code.
5. Check stack level and inlined argument ranges.
6. Construct native instruction code.
7. Write native instruction code into instruction memory.
8. Increment byte-code vector pointer.
9. Go to step 2, unless end of byte-code vector reached.

This operation is very similar to an interpreter loop, ex-
cept that native instructions are not executed but written to
instruction memory. The compiler assembles one or more
four-byte words that implement the source instruction in
the register-based stack operation.

After the last instruction of the active network program
has been translated and stored, registers are initialized ac-
cording to the stack values in the packet, and execution
continues at the entry point of the native program located
in instruction memory. When the program has finished, the
stack inside the packet is updated according to the stack
values, and normal forwarding in the network processor
continues.

D. Compiling the Examples

To illustrate the compiler, the two examples of Section
III are discussed here. The output is given in a simple
assembler language for the sake of human readability. The
following listing shows the traceroute example compiled
into assembler:

L1 ldr w5, ARRAY_TMP[0]
L2 add w5, #1
L3 str ARRAY_TMP[0], w5
L4 ldr w5, w2
L5 ldr w6, ARRAY_PKT[IPv4Header.dstAddr]
L6 cmp w2, w6
L7 jeq L20
L8 ldr w6, ARRAY_PKT[ANHeader.entryPoint]
L9 ldr w7, L19
L10 sll w7, #16
L11 or w7, L19
L12 add w6, w7
L13 ldr w7, ARRAY_TMP[0]
L14 ldr w8, ARRAY_TMP[1]
L15 ldr w9, ARRAY_PKT[IPv4Header.ttl]
L16 sub w8, w9
L17 ldr w9, ARRAY_PKT[IPv4Header.srcAddr]
L18 call anSend
L19 ret
L20 ldr w6, L19
L21 sll w6, #16
L22 ldr w7, L19
L23 add w6, w7
L24 str ARRAY_PKT[ANHeader.entryPoint], w7
L25 ldr w6, ARRAY_PKT[IPv4Header.srcAddr]
L26 j anFwdTo

Most active network instructions can be directly trans-
lated into a single assembler instruction. Line labels indi-

cate the source code line number from Section III-D. Com-
plex instructions are provided by the sandbox environment
(e.g., SEND, FORWTO, and GETCS). For some instructions
a subroutine call is performed (e.g., at label L18). The top
of stack starts in register w5. Register w0 to w4 hold spe-
cial values provided by the sandbox (e.g., w2 contains the
local IP address). ARRAY TMP holds the active network
memory, i.e., heap and initial stack. The first 64 bytes of
the packet and the active packet memory can be accessed
through ARRAY PKT.

The active code example to count the number of tra-
versed congested hops contains a loop through the exist-
ing queues at the outgoing router interface. The compiled
assembler code looks as follows:

L1 ldr w5, w2
L2 ldr w6, #0
L3 ldr w7, ARRAY_TMP[0]
L4 add w7, #1
L5 ldr w8, w7
L6 slr w8, #2
L7 cmp w8, #0

jne L28
L8 str ARRAY_TMP[0], w7
L9 call anGetNQ
L10 cmp w7, #0x8
L11 jnz L14
L12 call anGetNQ
L13 j L15
L14 ldr w7, #7
L15 ldr w8, w7
L16 cmp w8, #0

jeq L28
L17 ldr w8, w7
L18 ldr w9, w2
L19 ldr w10, w9

ldr w9, w8
ldr w8, w10

L20 call anGetCS
L21 slr w8, #1
L22 cmp w8, #0

jeq L26
L23 ldr w8, w7

ldr w7, w6
ldr w6, w8

L24 add w7, #1
L25 ldr w8, w7

ldr w7, w6
ldr w6, w8

L26 sub w7, #1
L27 j L15
L28 ret

Special subroutine calls are required for GETNQ (getting
number of queues) and GETCS (getting queue congestion
status). It can be seen that not all source instructions can
be compiled into a single native instruction. For example,
the SWAP operation has to be represented by three native
load instructions (see labels L23 and L25).

V. INTERPRETATION vs. COMPILATION

As explained in the preceding section, JIT compilation
for active networks can be performed in only one pass
through the source byte-code vector. This simple oper-
ation implies that a compiler need not take significantly
more cycles for compiling a program than interpretation
would take for interpreting all byte-code instructions in
the program exactly once. This section tries to support
this assumption and shows that with loops and native code
caching, JIT compilation operated in the data-path of a net-
work processor is feasible and can lead to performance ad-
vantages.

The approach described in the Section IV has been im-
plemented for the IBM PowerNP 4GS3 [15] network pro-
cessor. The PowerNP network processor has an embed-
ded processor complex that consists of 16 Pico Proces-
sors, multiple specialized co-processors, and a PowerPC
microprocessor. Picocode is the native Pico Processor in-
struction set. The picocode instruction set is specifically
designed for packet processing and forwarding. With the
support of co-processors (e.g., for table lookup or check-
sum computation) up to 32 packets can be processed in
parallel (i.e., aggregate 2128 MIPs). The PowerNP refer-
ence platform used for testing is capable of processing 40
Fast Ethernet or 4 GBit Ethernet ports in wire-speed. The
total PowerNP picocode instruction memory is 128 KB.
Owing to the simplicity of the compiler, it actually is small
enough (12 KB) to fit into the native picocode instruction
memory, and leaves enough space for regular IP forward-
ing functionality.

A. Comparing Single Instructions

The cost of compiling active programs is the key fac-
tor that determines whether JIT compilation is feasible for
active networks at all. A performance benefit is achieved
if interpretation time TI exceeds the sum of compilation
time TC and native execution time TE :

TI > TC + TE (6)

Because the compiler performs a fixed amount of cycles
for each instruction, the compilation time increases lin-
early with the program size, whereas interpretation and
native execution times depend on control operations and
the given resource bound.

In order to identify the principal compilation and execu-
tion costs that allows the instruction costs wi to be deter-
mined, the number of cycles spent for compiling, interpret-
ing, and executing has been measured for each instruction
(see Figure 4). With 1139 cycles, the cost of executing
or interpreting the SEND operation is significantly higher

0

20

40

60

80

100

120

140

160

10 20 30 40 50

N
at

iv
e

M
ac

hi
ne

 C
yc

le
s

Virtual Machine Opcode Number

57

interpretation
compilation and native execution

native execution

Fig. 4. Costs of interpretation, compilation, and native execu-
tion of individual source instructions.

than the average execution/interpretation cost of all other
instructions. This is due to the fact that network proces-
sors are not optimized for such specific active network-
ing tasks. Multicast, which is in some ways similar to the
SEND instruction, can be treated in network processors by
simply creating additional packet headers that are linked
to the original payload. However, the SEND instruction
not only builds a new header, but also reuses parts of the
code, stack, and heap. Therefore, the new packet has to
be created from scratch at high cost. Without the SEND
operation, 4.4 cycles for native execution, 47.7 cycles for
interpretation, and 57.4 cycles for compilation are spent
on average. Thus, by looking only at the average cost of
individual instructions, interpretation is slightly more ex-
pensive than compilation. However, native execution is
about ten times faster as interpretation.

To illustrate the different costs shown in Figure 4, the
implementation of the ADD operation is presented in as-
sembler code below. With interpretation two parameters
are loaded from memory, stack underflow is checked, and
the result of the native add is stored to the top-of-stack
position in memory:

ldr w14, ARRAY_PKT[w1] ; Get top of stack value
add w1, #4 ; Adjust top of stack
cmp w1, w0 ; Stack underflow?
jge stack_underflow
ldr w13, ARRAY_PKT[w1] ; Get top of stack value
add w14, w13 ; Perform addition
str ARRAY_PKT[w1], w14 ; Put result on stack

With compilation, first the current stack depth has to be
stored for checking tail recursion. Then stack underflow is
tested, and the native operation is constructed. Finally, the
operation is written to instruction memory:

str ARRAY_TMP[w1], w3 ; Store stack depth
cmp w3, #1 ; Stack underflow?

bl stack_underflow
ldr w14, #0xC4700 ; Construct native instr
or w14, w1 ; C47<reg1><reg2>000
sll w14, #8
sub w1, #1
or w14, w1
sll w14, #12
str INSTRMEM[w2], w30 ; Write native instr
add w2, #0x10 ; Inc instr mem addr

The native execution basically performs only the following
statement:

add w5, w6

For interpretation and compilation, a constant overhead
for mapping the source instruction is actually part of the
total cost. In Figure 4, this overhead of about 36 cycles
has already been included.

B. Execution Cost of Examples

So far we have looked at costs of interpretation, com-
pilation, and native execution of individual source instruc-
tions. In Figure 5 we now compare cycle cost for interpre-
tation with cycle cost for compilation and native execution
for the example programs mentioned above. We measured
cycle costs using the PowerNP picocode profiler tool.

When an active packet is interpreted, the ANSB first has
to check the consistency of the packet, load the memory
into a temporary array register, and fetch the first instruc-
tion block. This is done during initialization (Init). Then
the ANSB starts the main interpretation loop. At each
iteration the current instruction is decoded, the program
counter as well as the resource bound are updated, and the
corresponding instruction code is located (ANSB). The in-
struction code is then executed (Instr). Finally stack and
heap are written back and the active networking header is

0

500

1000

1500

2000

2500

3000

In
te

rp
re

ta
tio

n

C
om

pi
la

tio
n

C
yc

le
s

(a) Traceroute (transit)

Init

ANSB

Instr

Clean

Comp

Exec

0

200

400

600

800

1000

1200

1400

1600

In
te

rp
re

ta
tio

n

C
om

pi
la

tio
n

C
yc

le
s

(b) Traceroute (destination)

Init

ANSB

Instr

Clean

Comp

Exec

0

1000

2000

3000

4000

5000

6000

7000

8000

In
te

rp
re

ta
tio

n

C
om

pi
la

tio
n

C
yc

le
s

(c) Congestion-Hop Counter

Init

ANSB

Instr

Clean

Comp

Exec

Fig. 5. Comparing cycle cost for interpretation with cycle cost
for compilation and native execution.

0

500

1000

1500

2000

0 200 400 600 800 1000 1200 1400 1600

C
yc

le
s

(a
cc

)

Machine Code Program Counter

interpretation
native execution

Fig. 6. Accumulated cycle costs for interpretation and native
execution of the traceroute program at a transit router. The
horizontal structure in the case of interpretation is due to the
branch to interpret each instruction. The main loop of the
interpreter is near the machine code program counter 500.

updated (Clean) before any further packet processing oc-
curs.

This total interpretation cost is compared with the sum
of the cycles needed for compilation (Comp) and native
execution (Exec). Figure 5 shows that the JIT approach
does not lead to a performance improvement for the trace-
route example (a, b). However, it does so for the con-
gestion hop counter example (c). This demonstrates that
the JIT compilation approach described so far may al-
ready lead to speed-ups as soon as parts of the program
are executed more than once (e.g., because of looping in
(c)). In this case the overhead for instruction mapping
and memory-based stack operations increasingly domi-
nates the total cost of interpretation. The identified rel-
ative costs of compiling, interpreting, and natively exe-
cuting source instructions as well as the congestion hop
counter example, reveal that a single repeated execution of
large parts of a program can already pay back the invest-
ment for compilation. The high cycle cost of the transit
traceroute example—even in the case of compilation—is,
as in Figure 6, due to the SEND operation.

C. Caching

Relative to interpretation, the compilation overhead can
be reduced further if the compiled code is cached either at
nodes (i.e., basically not removed from instruction mem-
ory) or inside the packet. In the first case, packets of the
same flow could reuse native code with different initial
memory entries. In the second case, a packet can reuse
native code if another router on the way to the destination
supports the same native instruction set. In a homogeneous

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600

C
yc

le
s

(a
cc

)

Machine Code Program Counter

interpretation
native execution

Fig. 7. Accumulated cycle costs for interpretation and native
execution of the traceroute program at a destination router.

network environment, byte-code vectors in packets could
even be replaced by the compiled native code at the first
active network node in order to minimize packet overhead.

Thus, we revisit the examples introduced above and
compare interpretation (native code execution of inter-
preter interpreting the active code) directly with native ex-
ecution of the compiled version without considering the
additional cost of compilation. From measurements of the
exact costs for executing the example programs in the in-
terpretation and compilation approach, Figures 6 to 8 have
been produced. The accumulated number of cycles is plot-
ted over the program counter. The figures clearly show the
amount of branching during interpretation. For interpret-
ing each byte-code instruction, the program counter jumps
to the entry point of the instruction code. Native execution
however shows loops only if the source code itself con-
tains loops, as for instance with the congested hop counter
example (see Figure 8).

The predominance of the SEND operation in the trace-
route example when executed at a transit router is visible
in Figure 6. There is no benefit with native execution with
this operation because it is implemented as a core router
service. Only 29 cycles have been executed with native
execution before the SEND is invoked. Without the SEND
operation, the compiled program is therefore more than
26 times faster. With the SEND operation the speed-up is
about 1.7.

If traceroute is executed at the destination, the SEND
operation is not invoked. In this case a speed-up of over 15
times is achieved. In Figure 7 the line for native execution
ends at 33 cycles.

For the congested-hop counter example, a speed-up
of nearly eight times is achieved. The execution of the
congested-hop counter example shown in Figure 8 is also

0

1000

2000

3000

4000

5000

6000

7000

0 200 400 600 800 1000 1200 1400 1600

C
yc

le
s

(a
cc

)

Machine Code Program Counter

GETCS

interpretation
native execution

Fig. 8. Accumulated cycle costs for interpretation and native ex-
ecution of the congested-hop counter program (using eight
queues).

dominated by core router service functions. The tree
lookup operations GETNQ and GETCS are responsible for
about 80% of the executed cycles with native execution.
Without the service functions, the speed-up would even
rise to over 30 times.

The inequation given earlier in this section can be
adapted to also address the case of native code caching:

aTI > TC + aTE , (7)

where a is the number of times a native program can be
executed without recompilation. By re-arranging the in-
equation and assuming TE � TI , we obtain aTI > TC .
As we have found that compilation is only slightly more
expensive than interpretation, a performance benefit can
in general be expected already with a ≥ 2.

VI. CONCLUSIONS AND FUTURE WORK

The approach in this paper is different from previous
work on improving active network performance. First,

an existing active network language is used. Second, ac-
tive network nodes are based on network processors. And
third, active network programs are compiled before ex-
ecution into native network processor code at an active
network node. We have shown that this JIT compilation
approach can lead to a significant performance improve-
ment if the source code contains loops or if the approach
is combined with native code caching. In these cases the
overhead for instruction mapping and memory-based stack
operations increasingly dominates the total cost of inter-
pretation.

The results have been obtained with an implementation
of the SNAP language on a PowerNP network processor.
Although we tried to gain experience towards JIT compila-
tion for active networks on network processors in general,
not all of the assumptions apply to the currently existing
network processors. Critical for the generic applicability
of the described approach are write access to the instruc-
tion memory and the instruction memory size that needs to
be big enough to hold the compiler and the JIT-compiled
active code.

The mechanisms for code caching either at nodes or in-
side packets have not yet been integrated into the current
implementation. Further work is also planned on static
analysis of active network programs. Information from
static program analysis could help to determine optimum
initial resource bounds so that it can be assured that benign
packets reach their destinations. This information could
also be used to determine the range of a packet meaning
the set of final destinations reached by the packet or its
descendents, for a known resource bound.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and
in particular Scott Karlin for their valuable comments and
help while preparing the final version of this paper.

REFERENCES

[1] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rock-
well, and C. Partridge, “Smart Packets: Applying active networks
to network management,” ACM Transactions on Computer Sys-
tems, vol. 18, no. 1, pp. 67–88, Feb. 2000.

[2] D. J. Wetherall and D. L. Tennenhouse, “The ACTIVE IP option,”
in Proceedings of the Seventh ACM SIGOPS European Workshop,
Connemara, Ireland, Sept. 1996.

[3] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner, “Router Plu-
gins: A software architecture for next-generation routers,” IEEE/
ACM Transactions on Networking, vol. 8, no. 1, pp. 2–15, Feb.
2000.

[4] D. S. Alexander, M. Shaw, S. M. Nettles, and J. M. Smith, “Ac-
tive Bridging,” in Proceedings of the ACM SIGCOMM Confer-
ence, New York, Sept. 1997, vol. 27 of Computer Communication
Review, pp. 101–114, ACM Press.

[5] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “An architec-
ture for active networking,” in Proceedings of INFOCOM ’97,
Apr. 1997.

[6] S. Rooney, J. E. van der Merwe, S. A. Crosby, and I. M. Leslie,
“The Tempest: A framework for safe, resource-assured pro-
grammable networks,” IEEE Communications Magazine, vol. 36,
no. 10, pp. 42–53, Oct. 1998.

[7] D. J. Wetherall, “Active network vision and reality: Lessons from
a capsule-based system,” Operating Systems Review, vol. 34, no.
5, pp. 64–79, Dec. 1999.

[8] L. P. Deutsch, “A LISP machine with very compact programs,”
in Proceedings of the 3rd International Joint Conference on Arti-
ficial Intelligence, Aug. 1973, p. 697.

[9] E. C. R. Hehner, “Computer design to minimize memory require-
ments,” IEEE Computer, vol. 9, no. 8, pp. 65–70, Aug. 1976.

[10] J. Ernst, W. Evans, Ch. W. Fraser, S. Lucco, and T. A. Proebsting,
“Code compression,” in SIGPLAN ’97 Conference on Program-
ming Language Design and Implementation, 1997, pp. 358–365.

[11] B. Krupczak, M. H. Ammar, and K. L. Calvert, “Implementing
protocols in Java: The price of portability,” in Proceedings of
INFOCOM ’98, Mar. 1998, pp. 765–773.

[12] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong,
J.-L. Baer, B. N. Bershad, and H. M. Levy, “The structure and per-
formance of interpreters,” in Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-VII), 1996, pp.
150–159.

[13] M. Cierniak and W. Li, “Just-in-time optimizations for high-
performance Java programs,” Concurrency: Practice and Expe-
rience, vol. 9, no. 11, pp. 1063–1073, 1997.

[14] J. T. Moore, M. Hicks, and S. Nettles, “Practical programmable
packets,” in Proceedings of the 20th Annual Joint Conference
of the IEEE Computer and Communications Societies (INFO-
COM’01), Apr. 2001.

[15] “IBM PowerNP NP4GS3 Network Processor
Datasheet,” http://www.ibm.com/chips/techlib/ tech-
lib.nsf/products/IBM PowerNP NP4GS3, Feb. 2002.

[16] M. W. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles,
“PLAN: A packet language for active networks,” in International
Conference on Functional Programming, 1998, pp. 86–93.

[17] B. Schwartz, W. Zhou, A. Jackson, W. Strayer, D. Rockwell, and
C. Partridge, “Smart packets for active networks,” ACM Com-
puter Communications Review, Jan. 1998.

[18] J. J. Hartman, P. A. Bigot, P. Bridges, B. Montz, R. Piltz,
O. Spatscheck, T. A. Proebsting, L. L. Peterson, and A. Bavier,
“Joust: A platform for Liquid Software,” IEEE Computer, vol.
32, no. 4, pp. 50–56, Apr. 1999.

[19] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: A
toolkit for building and dynamically deploying network proto-
cols,” Proceedings of IEEE OPENARCH’98, Apr. 1998.

[20] M. P. Plezbert and R. K. Cytron, “Is Just in Time = Better Late
than Never?,” in Conference Record of POPL ’97: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Paris, France, 15–17 Jan. 1997, pp. 120–131.

[21] Intel Corporation, IXP1200 Network Processor Datasheet,
September 2000.

[22] J. T. Moore, “Safe and efficient active packets,” Tech. Rep. MS-
CIS-99-24, University of Pennsylvania, Oct. 1999.

[23] Vitesse Semiconductor Corporation, Longmont, Colorado,
IQ2000 Network Processor Product Brief, 2000.

[24] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb, “Building a
Robust Software-Based Router Using Network Processors,” in
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2001, pp. 216–229.

