The Role of Network Processors
in Active Networks*

Andreas Kind, Roman Pletka, and Marcel Waldvogel

IBM Zurich Research Laboratory
CH-8803 Riischlikon, Switzerland
{ank,rap,mwl}@zurich.ibm.com

Abstract. Network processors (NPs) implement a balance between hard-
ware and software that addresses the demand of performance and pro-
grammability in active networks (AN). We argue that this makes them
an important player in the implementation and deployment of ANs. Be-
sides a general introduction into the relationship of NPs and ANs, we
describe the power of this combination in a framework for secure and
safe capsule-based active code. We also describe the advantages of of-
floading AN control point functionality into the NP and how to execute
active code in the data path efficiently. Furthermore, the paper reports
on experiences about implementing active networking concepts on the
IBM PowerNP network processor.

1 Introduction

The ongoing convergence of voice, broadcast, and data networks leads to a
demand for a novel flexible and high-performance packet-forwarding technol-
ogy. Flexibility is needed for short development cycles and for the support
of evolving protocols and standards, combined with the shift towards high-
performance packet handling due to the increasing bandwidth demands. Today,
packet handling is performed by application-specific integrated circuits (ASICs),
field-programmable gate arrays (FPGAs), or general-purpose processors (GPPs).
While ASICs have clear advantages in terms of performance, the hardware func-
tions do not provide sufficient flexibility. In contrast, packet forwarding based
on GPPs provides high flexibility, but insufficient performance because GPPs
were not designed with packet forwarding in mind. Finally, FPGAs can be re-
programmed at gate level, combining features from ASICs and GPPs. However,
high-level programmability of FPGAs still is very limited.

Network processors (NPs) are specifically designed processors for fast and
flexible packet handling [2]. Typically based on an embedded processor complex
with application-specific instructions and coprocessor support, NPs can achieve
even higher-layer packet processing at line speeds of several Gb/s. Besides the

* This is a significantly updated and extended version of a paper presented at ANTA
2002 [1]

2 Andreas Kind, Roman Pletka, and Marcel Waldvogel

instruction set, the entire design focuses on high-performance packet processing,
including memory, hardware accelerators, bus, and I/O architecture.

NPs are well suited for most packet-processing tasks, ranging from content
switching, load balancing, traffic conditioning, network security, and terminal
mobility to active networks [2,3]. This paper focuses on the specific role of NPs
in the application domain of ANs.

Recent work on security and management in ANs [4-6] has resulted in se-
cure and manageable approaches to active networking. This paper argues that
the remaining performance concerns can be addressed with NPs because their
balance between hardware and software addresses the demand for high data-path
performance without sacrificing programmability.

The remainder of the paper is structured as follows. The next section intro-
duces NP architectures and their potential applications. The general benefits of
NPs for implementing ANs is described in Section 3. The specific advantages of
a concrete AN framework are shown in Section 4, and our experience from its
implementation is presented in Section 5.

2 Network Processor Architectures

Compared with GPPs, NPs have much simpler arithmetic and caching units
as their speed is achieved through parallel packet processing in multiple ex-
ecution threads. In addition, common packet-handling functions, such as tree
lookup, classification, metering, policing, checksum computation, interrupt and
timer handling, bit manipulation, and packet scheduling, are frequently sup-
ported by coprocessors or specific functional hardware units. Moreover, NPs are
often teamed with an embedded GPP for more complex tasks [3].

Depending on the location in the network (i.e., edge or core), NP architec-
tures differ in terms of hardware design. The bus architecture as well as the
size and type of memory units vary considerably between existing NPs. Edge-
type NPs are better equipped for intelligent and often stateful packet processing,
whereas core-type NPs focus on processing aggregated traffic flows rather than
individual packets.

A main design decision with NPs is whether packet processing prefers the
run-to-completion or the pipeline model [2,3,7]. The former dedicates a single
thread to packet forwarding from the input interface to the packet switch inter-
connecting multiple NPs within a router and, likewise, from the switch to the
output interface. Threads run on a fixed number of core processors, which share
the memory units, such as lookup trees, instruction memory, and global packet
buffers. An alternative to the run-to-completion model is the pipeline model.
Here, the forwarding process is divided into different stages, and each stage is
handled by another core processor with its own instruction memory [8].

2.1 Programmability

The NP hardware is typically combined with a horizontally layered software ar-
chitecture (see Figure 1). On the lowest layer, the NP instruction set provides

The Role of Network Processors in Active Networks 3

Interfaces
———— Network Services APIs
) Network< ----------------- >
Yy VY \ A

— Node Services APIs

Ingress Ingress

Data
Control
Management

N 4
I switch Fabric |

Network Network _
E— Processor < »| Control Processor

»
Egress Egress

Fig. 1. Network processor programmability.

direct means for handling incoming packets. Development tools (e.g., compiler
and debugger) support a standard software development approach for program-
ming network processors already on this lowest layer. Many NPs allow access
to the instruction memory from a separate control processor, enabling extension
or update of the router functionality at runtime. The control processor is typi-
cally connected to the NP via an interprocess communication protocol, allowing
control-plane packet exchange between the two processors.

On the control processor, application programming interfaces (APIs) provide
an abstract view of the resources of the network node [9]. The APIs are dedicated
to different data-plane, control-plane, and management-plane services of the NP
(e.g., initialization, interface configuration, memory and address management,
forwarding and address resolution, traffic engineering, classification, diagnostic,
event logging, debugging) and can be used for developing portable network ap-
plications [2,3,10,11]. Also, the use of software allows services to break out of
a single node and span the entire network. Network-wide services can be imple-
mented in a simple and fast way, for instance using protocols from policy-based
networking.

2.2 NP Applications

The use of NPs is beneficial in network applications and services which depend
on high data rates as well as rapid development and deployment. In particular,
the following application domains may benefit from NPs:

Content switching and load balancing. The client-server model of infor-
mation access via HI'TP, FTP, or multimedia streaming protocols is widespread
today. For popular sites, a server may have to handle requests from many

4 Andreas Kind, Roman Pletka, and Marcel Waldvogel

clients with reasonable response times, which can quickly lead to server over-
load and network congestion. Content switching and load balancing address
this problem by transparently distributing client requests across different
servers [12,13].

Traffic differentiation. Quality of service (QoS) and traffic engineering ap-
proaches in IP networks require traffic differentiation based on classification,
conditioning, and forwarding functions at edge and core routers [14, 15].
These functions increase data-plane processing and are likely to continue
evolving in the future, requiring the flexibility provided by NPs.

Network security. Because business and public institutions increasingly make
use of the Internet, security functions, such as encryption, intrusion detec-
tion, and firewalling, are needed for their protection. The resulting increase
in data-plane processing due to security functions provides further opportu-
nities for NPs.

Terminal mobility. The convergence of mobile and IP networks requires edge
routers to support new network functions (e.g., tunneling [16] and bundling [17]
of data streams between wireless end terminals and IP backbones). These
protocols are likely to evolve in the near future. NPs help mobile-equipment
manufactures to adjust their products to the latest standards much faster
than with dedicated hardware-based solutions. An alternative software-based
solution would not be able to support wire-speed forwarding combined with
stateful high-layer packet processing.

Active networking. In AN packets are no longer passively forwarded, but code
carried in packets can actively influence the forwarding process at routers.
They require not only significantly more data-plane processing, but can only
be implemented if routers expose their state of operation and allow the
reconfiguration of forwarding functions.

The focus in the rest of the paper is on the relationship between ANs and NPs.

3 General Advantages of NP-based ANs

The key idea of ANs [18] is to decouple network services from the networking
infrastructure. This is achieved with active packets and active nodes. Active pack-
ets are extended data packets that are sent either from end-user applications, AN
gateways, or network-management applications through an AN domain. They
carry code for execution at traversed active nodes either directly or by reference.
The latter requires a separate code-distribution mechanism to be in place.
Active nodes provide an execution environment (EE) for running active code.
The EE controls the access to node resources (e.g., link state, routing table, and
congestion status) and enables the creation of new active packets as well as the
modification of the active packet currently being handled. In some systems, ac-
tive packets can pick up or leave soft state. Typically, the EE is implemented
as a virtual machine that interprets active programs represented in byte-code.
This approach provides architecture neutrality and security because the virtual

The Role of Network Processors in Active Networks 5

instruction set abstracts from the underlying proprietary router, and the execu-
tion of active code can be controlled as needed.

Unfortunately, the interpretation of byte-coded active programs significantly
increases the processing overhead per packet. This demand for more performance
cannot be addressed with hardware-based forwarding solutions. Routers imple-
mented in ASIC or with FPGAs cannot provide the level of programmability
required for active nodes. Next we discuss how some typical AN concepts can
benefit in terms of performance and/or ease of development when implemented
on a NP.

3.1 Capsule Approach

The capsule approach replaces the passive packets used today by small active
packets carrying code that will be executed on each node along their path.
In addition to the executable byte-code in active packets, user data can also
be embedded in these capsules. This approach introduces a novel dimension in
networking because the behavior of a packet is a direct result of the computations
executed on the node and can go as far as the creation of new packets. However,
some security constraints have to be fulfilled that limit the potential of such
an approach. The SNAP (safe networking with active packets) language [19]
introduces a byte-code language that is safe with respect to network-resource
usage (resource conservation) and evaluation isolation.

Capsules are typically small due to the MTU limitation and based on a
simple instruction set. Execution of the capsule thus is inherently conservative
in its memory usage and as such can be easily implemented on NPs with limited
memory. A clear advantage of not having to revert to a GPP is reduced delay
between packet arrival and program execution as well as high execution speed
with full and fast access to the router state. In certain circumstances capsules can
even benefit from just-in-time compilation and subsequent execution in native
NP instructions [20].

3.2 Plugin Approach

Active code does not necessarily have to be inserted in active packets, because
a URL-like pointer can be sufficient [21]. This approach pays off when the code
is large and will need to be executed repeatedly.

When this plugin approach is seen from a NP point of view, two options for
the installation of the active code component exist. If the component contains a
performance-critical code segment with the purpose of extending the forwarding
code, it has to be linked dynamically into the already existing forwarding code on
the NP. This may be in the form of either interpreted byte-code for a preinstalled
virtual machine or native core processor code.

If the downloaded component is dedicated to network control or management,
it can be linked into an EE at the control processor (CP) instead. In this case, the
APIs at the control processor can greatly simplify the mapping of the functions
that can be used by active programs to the functions actually available on the

6 Andreas Kind, Roman Pletka, and Marcel Waldvogel

NP. For instance, a Diffserv [14] plug-in component can directly use the service
APIs for dynamic creation and deletion of classifier rules, traffic markers, and
traffic shapers.

3.3 Application-Level Multimedia Filtering

In unicast scenarios with peer-to-peer communication between end users, it is
possible to negotiate or sense optimum sending rates. However, in multicast
scenarios, network resources are difficult to use effectively because the bandwidth
up to a congested router may be partially wasted. Positioning application-level
packet filters in multicast trees (e.g., preferential dropping of MPEG B-frames)
can result in a much better overall link utilization while preserving quality.

It has been proposed that ANs perform application-level multimedia filter-
ing [22], where filters are injected into a network so that an optimum reservation
tree is created. The hardware classifiers provided by NPs as well as the corre-
sponding classifier APIs at the control-processor level would make it very easy
to implement application-level multimedia filtering.

3.4 Network Management

Active networking for network management [23] results in significantly fewer
implementation problems because only few active packets are injected into a
network. In general, the forwarding of network-management packets is not time-
critical as monitoring and configuration tasks operate on a larger time scale than
control- or data-plane tasks. NPs typically provide mechanisms to direct such
non-performance-critical packets to the control processor (e.g., using IP header
options).

The control processor is equipped with APIs to support typical network-
management operations, such as querying and configuring the network nodes.
However, active packets sent out for network management-purposes are not used
to set and obtain node parameters only, but may include in the code they exe-
cute some intelligence for preprocessing and aggregating information from sev-
eral managed nodes before sending it back to the management station. Such a
distributed approach to network management can prevent management stations
from becoming overwhelmed with messages, and ensures that the load incurred
due to network-management traffic remains low.

4 Advantages of an NP-based AN Framework

The advantages of NPs for implementing and deploying ANs have been described
in general terms in the previous section. This section introduces a flexible and
generic framework for active networking that matches the functionality provided
by NPs in order to exemplify the power of the NP/AN relationship.

The goal of this framework is to enable new networking functionality (i.e.,
focused on QoS support) which can be dynamically deployed while maintaining

The Role of Network Processors in Active Networks 7

architecture neutrality. Therefore our framework relies on a capsule-based ap-
proach providing flexible and fast execution of active packets in the data path
but also allows active code to be stored on active nodes. Most programming lan-
guages are unpredictable in terms of resource consumption and therefore inap-
propriate for safe active networking. A suitable active-networking programming
language needs to trade off functionality for flexibility while taking into account
security. From the considerable number of security issues entailed by ANs we
derive the following requirements such an approach has to comply with.

Safe byte-code language. Architectural neutrality, intrinsic safety properties
(intrinsic bounds on CPU, memory, and networking bandwidth), and appli-
cability of the language to current and future application domains are prime
criteria when designing or choosing the language.

Resource bound. Resources need to be bounded along two axis: per-node re-
sources and the number of nodes/links the packet will visit.

Safety levels: An appropriate safety hierarchy monitors control-plane and data-
plane activities. The handling of active-networking packets is divided into
six safety levels as is shown in Table 1. The means for data-plane safety are
given through the byte-code language. Safety levels 3-5, called the higher
safety levels (HSLs), require admission control at the edge of the network
using policies depending on the network needs. This also enables easy ac-
counting and charging for active packets. Adding and removing dynamic
router services requires a public-key infrastructure for integrity and authen-
tication of active code. Alternatively, higher-level packets can be filtered or,
better, disabled for a certain domain only.

Sandbox environment: Any active byte-code is executed in a safe environ-
ment called the active networking sandbox (ANSB). Information exchange
with the router is protected by so-called router services.

Router services: Router services dynamically enhance router functionality to
overcome limitations of the byte-code instructions. They can be static, i.e.,
defined as op-codes in the byte-code language (e.g., IP address lookup, in-
terface enumeration, flow queue management, or congestion status infor-
mation), or dynamic (e.g., installation of active code into the ANSB for
active queue management (AQM) or scheduling, policy manipulation using
a dynamically loaded router service). Dynamic router services are usually
tailored to networking tasks with a focus on control-plane functionality, and
take significantly more time to execute than normal byte-code instructions
do. Therefore, router services belong to the set of instructions with a safety
level higher than 1. The installation of new router services is restricted to
safety level 5. Such an active packet contains the context for which the new
service is applicable, and the code section to be installed is given in the
packet’s payload.

Routing: Active packets will not interfere with routing protocols. Alternative
routes can be proposed by router services as long as the corresponding entries
are defined in the local routing table.

8 Andreas Kind, Roman Pletka, and Marcel Waldvogel

Table 1. Safety hierarchy in active networks.

Safety Allowed network functionality Packet and router requirements

level

5 Dynamic router services (active Authentication of active packets
code): registering new router needed using a public-key
services infrastructure.

4 Complex policy insertion and Admission control at the edge of the
manipulation network; trusted within a domain.

3 Simple policy modification and Running in a sandbox environment,
manipulation limited by predefined rules and

installed router services.

2 Creation of new packets and Sandbox environment based on the
resource-intensive router services knowledge of the instruction
(lookups etc.) performance.

1 Simple packet byte-code Safety issues solved by restrictions in

the language definition and the use of
a sandbox.

0 No active code present in packets Corresponds to traditional

packet-forwarding process.

In general, we distinguish between safety and security. Safety is given through
the definition of the byte-code language itself, the safety hierarchy, and the safe
EE for active code. The goal of safety is to reduce risks to the level of tradi-
tional IP networks. Security can only be provided by additional network security
services including cryptography, authentication, and integrity mechanisms, used
to protect the code executed at higher safety levels. This combination achieves
both fast packet forwarding in the data path and secure and programmable
control-path.

5 Implementation Experience

5.1 Offloading of AN Functionality

Note that the traditional NP control point (CP) does not necessarily run on the
same GPP as the ANSB and that it even makes sense to separate or dynamically
offload AN functionality. For example, the CP can run on the external GPP while
the higher safety levels of the ANSB are offloaded to the embedded PowerPC
(ePPC) available on the PowerNP. The ANSB obtains resources and behavior
bounds' assigned by the CP and administrates them autonomously. Given the
distributed layout, which enhances the robustness of the architecture, this is
certainly the preferred model. Figure 2 gives an overview of the model based on

! The behavior bound consists of a classifier describing to whom the service will be
offered, a traffic specification (e.g., sender Tspec), and a resource bound vector that
characterizes the maximum resource usage of the router service.

The Role of Network Processors in Active Networks 9

External attached CP ePPC

] Resource

< . ANSB

& TC|| Routing Manager

5 Protocols .

3 NPCP |

59 /,’\ i)

§§ ! /| NPDD B NPDD
= ' - I :
B | Netlink’ | | | ;

8 [| | /

I i | /

o | | i

@ Routing IP Stdck | / IP Stack

g Table 1 l ;

Q ! ' i

X ! ! /

Proxy Device Driver | / Device Driver
| PCI-X-to-Ethernet Bridge || _/EPC-to-ePPC Intérface |
[T SLTToIIINIITIITIITL 7*v:*r ************** -

= vy v vy vy v
i Classification | [Routing | |[AN Code | | Policier | | AQM Scheduler
ge S Layer 4 Handler
S0 Layer 3
uuw Layer 2

Fig. 2. Architectural overview of the implementation when the ANSB is offloaded to
the ePPC.

an IBM PowerNP 4GS3 network processor. In the current implementation, both
the CP and the ePPC run a Linux 2.4.17 kernel.

In contrast with a standard Linux router without NP, routing and MAC
information maintained in the Linux kernel are automatically mirrored to the
NP by the NP control point (NPCP) task, enabling the direct use of many
standard control-plane applications. NPCP uses the NP APIs provided by the
NP device driver (NPDD). These APIs are also used by NP-aware applications,
e.g., a resource manager setting up QoS parameters (e.g., Diffserv over MPLS,
flow control).

The AN part is separated from the CP as follows. Safety levels 0 and 1 are
handled by the active-networking code handler in the data path of the NP. All
higher safety levels are offloaded to the ANSB on the ePPC. The ANSB then
provokes NPDD API calls for configuring the NP within the configured policies
attributed to the ANSB.

5.2 Packet Definition

Our approach sits directly on top of the networking layer, utilizes the router
alert TP header option to indicate active packets, and inserts an active header
and code between the IP header and payload. Our approach is a dialect of
the approach first introduced by Moore [19] and his SNAP active networking

10 Andreas Kind, Roman Pletka, and Marcel Waldvogel

IP src address
IP dst address

Options|
Ver | Flags Port
Ingress entry Egress entry
Code size Memory size
Heap pointer Stack pointer

Memory M

Code section Cy

Payload

Fig. 3. Active packet including parts of the IP header. Ingress and egress entry points
point to the corresponding starting points in the code section, Cy. Heap and stack
pointers indicate the current positions in the memory section, M.

language [24] which allows limited backward loops while still maintaining the
safety properties [20]. This approach is downward-compatible, as SNAP-unaware
routers will just treat the packet according to safety level 0 and forward them
as normal IP packets.

The active packet header (Figure 3) consists of several fields that sum up
to 16 bytes. The 4-bit version field denotes the version of the SNAP language
and is equal to 2. The 12-bit flag header is divided into two 6-bit fields that
hold information on the safety levels of the active packet. The first is the ini-
tially assigned safety level (IASL) and contains the safety levels in which the
packet operates according to the creator of the packet. The second holds the
domain-specific safety levels (DSSL) representing the safety levels applicable in
the current domain. They are set by packet classification at the ingress of a
domain, and remain valid for the entire path through the domain. This mech-
anism allows a temporary reduction of the safety level within a given domain.
The port field corresponds to the port field in the transport-layer protocols (i.e.,
UDP, TCP) and is kept for reasons of compatibility with the original SNAP
packet definition. Hence, active packets can act as a new transport protocol.

The NP-based router architecture, which is no longer centralized as NPs can
reside on each blade, divides packet processing into two stages: Ingress processing
directs packets from the physical interface to the switch, and egress processing
does the reverse. Forwarding and classification decisions are usually taken on the
ingress, whereas the egress is mainly involved in packet scheduling. This implies
that the processing of an active packet can be performed on the ingress as well
as the egress side. Consequently, two entry points have to be maintained. If
the router has a centralized processing unit (e.g., software-based Linux router)
the egress code is best placed directly after the ingress code. Such a router can
ignore the egress entry point and execute all active code beginning at the ingress
entry point and falling through to egress processing.

The Role of Network Processors in Active Networks 11

L2 Processing L3 Processing L4 Processing
Hdr Checksum
Ingress
(Frame Size) (Unicast{Multicast) (L4 Classification) Flow

(Start IP Lookup)

Ingress Counter

(Dst MAC Address) Control

Switch Interface

Physical Layer Devices

IP Options

Active Networking
Code Handler

Fig. 4. Ingress data-path processing on a network processor.

Heap and stack elements are 32 bits in size, and instructions are encoded in
16 bits. The instruction set is further divided into a 7-bit opcode and an 9-bit
immediate argument. To minimize data swapping during active packet execution,
the memory section of the packet is situated between the packet header and the
active-code section (Figure 3). In our case the memory section has a maximum
size of 128 bytes. The packet payload delivered to an application remains at
the end of the packet and can also be seen like a ROM by the active code. By
moving the heap and stack into one memory section that is being fixed when the
packet is built, more complex error handling (stack overflow) arises but achieves
significant improvements that speed up the execution of active packets in an NP.

For deep packet processing, NPs usually handle packet data in blocks of 64
bytes (pages). Hence, branch decisions in data-path active code encounter an
additional penalty if the branch target does not lie in the current page. Forward
branches require the chained list of pages to be traversed because the location of
pages that have not yet been loaded is unknown. Backward branching can load
the correct page immediately, as a page history is maintained.

5.3 Data-Path Elements

This section discusses the integration of the active code into the existing data-
path processing. The functional behavior of the forwarding code is shown in
Figure 4 for the ingress and in Figure 5 for the egress part.

As soon as active packets have been correctly identified in the layer-3 for-
warding code (cf. Figure 4) their processing continues in the active-networking
code handler. Depending on their functionality, they still might traverse layer-4
processing later. This is the case for HSL-active packets, which require layer-4
classification at domain ingress nodes. The egress part is much simpler as there
is no layer-4 classification, and active packet processing can immediately start
at dispatch time. HSL-active packets have to be classified already on the ingress
side (result is kept in the DSSL field) to avoid unnecessary redirection to the
ingress. AQM can be provided on the ingress and/or egress by flow control mech-

12 Andreas Kind, Roman Pletka, and Marcel Waldvogel

L3 Processing

Active Networking
Code Handler

L2 Processing Scheduler

Egress combined WFQ and
Enet Encapsulatio Flow Priority Scheduler
13

(Engueue) Control Flow Port

I

13
(EPCT Lookup)

Port Type (Enet)
ARP table lookup

opt. VLAN Tag
DSCP Remark

Switch Interface

‘Physical Layer Devices ‘

Fragmentation

Queues
0],
1
1
I

2047

Fig. 5. Egress data-path processing on a network processor.

anisms which provide congestion feedbacks signals (i.e., packet arrival rates and
queue lengths).

5.4 Control-Path Elements

HSL-active packets can fulfill control-path tasks. These packets require layer-
4 classification and verification of the TASL and DSSL done by the active-
networking code handler. Matching packets are then redirected to the ANSB on
the ePPC. As can be seen in Figure 4, classification takes place only at ingress
and redirection is initiated from there. Possible actions are the deposition of
active code (safety level 5) and classifier updates (safety levels 3 and 4) within
the behavior bounds. Finally, the ANSB translates updated information (e.g.,
classifier) into NPDD APT calls to reconfigure the NP accordingly. Tasks such
as routing and interface management are still maintained by the traditional CP
as shown in Figure 2.

6 Conclusion

Despite evident advantages of active-networking technology, ANs still lack the
support in mainstream networking products. Many vendors fear that the safety
and performance of their platforms will be compromised while other vendors
using ASICs are prevented from implementing the flexibility required for ANs.
Network processors fill the gap by enabling high performance and flexibility.

The paper shows in general and in the context of a specific AN framework
that the implementation and deployment of ANs can benefit from network pro-
cessor technology. The advantages are linked to improved performance and sim-
plified development.

The specific NP framework for demonstrating the beneficial AN/NP relation-
ship allows to tap the power of ANs without sacrificing the safety of traditional
IP networking. The main security and safety advantages result from the com-
bination of a byte-code language with intrinsic safety properties, a lean 6-level

The Role of Network Processors in Active Networks 13

safety hierarchy enabling control-plane functionalities and persistent active code
in active nodes, a sandbox environment for code execution, and off-loading of
active-networking functionality from the control point to the NP’s GPP pro-
cessor. This isolation provides a physical barrier in our implementation between
the packet-processing core of the NP (i.e., the embedded processor complex), the
ePPC running the active networking sandbox, and the control and management
functions provided by the control point GPP. We believe that this approach will
lead to a wider acceptance of AN in networking devices.

References

1.

11.

12.

13.

14.

Andreas Kind. The role of network processors in active networks. In Proceedings of
the First International Workshop on Active Network Technologies and Applications
(ANTA 2002), Tokyo, Japan, March 2002.

R. Haas, C. Jeffries, L. Kencl, A. Kind, B. Metzler, R. Pletka, M. Waldvogel,
L. Freléchoux, and P. Droz. Creating advanced functions on network processors:
Experience and perspectives. IEEE Network, 17(4), July 2003.

J. Allen, B. Bass, C. Basso, R. Boivie, J. Calvignac, Gordon Davis, Laurent
Freléchoux, M. Heddes, A. Herkersdorf, A. Kind, J. Logan, M. Peyravian, M. Ri-
naldi, R. Sabhikhi, M. Siegel, and M. Waldvogel. IBM PowerNP network processor:
Hardware software and applications. IBM Journal of Research and Development,
47(2/3):177-194, March/May 2003.

S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee. Strong security for active
networks. Proceedings of IEEE OPENARCH ’01, pages 63-70, April 2001.

D. S. Alexander, P. B. Menage, A. D. Keromytis, W. A. Arbaugh, K. G. Anag-
nostakis, and J. M. Smith. The price of safety in an active network. Journal of
Communications and Networks, 3(1):4-18, March 2001.

M. Brunner, B. Plattner, and R. Stadler. Service creation and management in
active telecom networks. Communications of the ACM, 44(4):55-61, April 2001.
P. Crowley, M. E. Fiuczynski, J.-L. Baer, and B. N. Bershad. Characterizing
processor architectures for programmable network interfaces. In Proceedings of the
ACM International Conference on Supercomputing, pages 54—65, May 8-11, 2000.
M. Venkatachalam, P. Chandra, and R. Yavatkar. A highly flexible, dis-
tributed multiprocessor architecture for network processing. Computer Networks,
41(5):563-586, April 2003.

Network Processing Forum. http://www.npforum.org/.

. J. Biswas, A. Lazar, J. Huard, K. Lim, S. Mahjoub, L. Pau, M. Suzuki, S. Torstens-

son, W. Wang, and S. Weinstein. The IEEE P1520 standards initiative for pro-
grammable network interfaces. IEEE Comm. Mag., 36(10):64-70, October 1998.
S. Denazis, K. Miki, J. Vicente, and A. Campbell. Designing interfaces for open
programmable routers. In Proceedings of International Working Conference on
Active Networks, pages 13-24, July 1999.

Z. Genova and K. Christensen. Challenges in URL switching for implementing
globally distributed Web sites. In Proceedings of the Workshop on Scalable Web
Services, pages 89-94, August 2000.

L. Kencl and J.-Y. Le Boudec. Adaptive load sharing for network processors. In
Proceedings of INFOCOM 02, June 2002.

S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture
for Differentiated Services. RFC 2475, IETF, December 1998.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Andreas Kind, Roman Pletka, and Marcel Waldvogel

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Archi-
tecture. RFC 3031, IETF, January 2001.

The 3rd Generation Partnership Project (3GPP). http://www.3gpp.org, March
2002.

R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Ry-
tina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol.
RFC 2960, IETF, October 2000.

D. L. Tennenhouse and D. J. Wetherall. Towards an active network architecture.
ACM Computer Communication Review, 26(2):5-18, April 1996.

J. T. Moore. Safe and efficient active packets. Technical Report MS-CIS-99-24,
University of Pennsylvania, October 1999.

A. Kind, R. Pletka, and B. Stiller. The potential of just-in-time compilation in
active networks. Proceedings of IEEE OPENARCH 02, June 2002.

R. Keller, L. Ruf, A. Guindehi, and B. Plattner. PromethOS: A dynamically
extensible router architecture supporting explicit routing. In Proceedings of Int.
Working Conf. on Active Networks IWAN, pages 20-31, December 2002.

I. Busse, S. Covaci, and A. Leichsenring. Autonomy and decentralization in active
networks: A case study for mobile agents. In Proceedings of International Working
Conference on Active Networks, pages 165—-179, 1999.

B. Schwartz, W. Zhou, A. Jackson, W. Strayer, D. Rockwell, and C. Partridge.
Smart packets for active networks. In Proceedings of IEFE OPENARCH ’99,
March 1999.

J. T. Moore, M. Hicks, and S. Nettles. Practical programmable packets. In Pro-
ceedings of INFOCOM ’01, April 2001.

