
1

A Buffer-Management Scheme for Bandwidth
and Delay Differentiation using a Virtual

Scheduler
Roman Pletka†,∗, Patrick Droz† and Burkhard Stiller‡

†IBM Research, Zurich Research Laboratory ‡Computer Engineering and Networks Laboratory (TIK)

8803 Rüschlikon, Switzerland ETH Zürich, 8092 Zürich, Switzerland

{rap,dro}@zurich.ibm.com stiller@tik.ee.ethz.ch
∗Corresponding author. Phone: +41-1-724-8351, Fax: +41-1-724-8954

Abstract—This paper presents a new scalable buffer-management
scheme for IP Differentiated Services. The scheme consists of a Dif-
ferentiated Random Drop (DRD) algorithm using feedback from a
virtual scheduler. DRD choses a queue to perform an early packet
drop to avoid congestion according to a specific probability function.
First it will be shown that DRD in conjunction with first-come first-
served scheduling is able to support relative service differentiation.
The virtual scheduler is introduced to enable service differentiation
in terms of bandwidth and delay at the same time. A virtual sched-
uler runs in parallel to the real scheduler and maintains virtual queue
lengths that are being used by the congestion avoidance scheme as a
feedback for packet drop decisions. Scheduling packets for transmis-
sion is performed by the real scheduler only.

Keywords— Quality-of-Service, Differentiated Services, Relative
Service Differentiation, Bandwidth and Delay Guarantees

I INTRODUCTION

In the past few years many different scheduler and
queue-management algorithms have been proposed. Re-
search activities have been and still are focused on how
to satisfy the Quality-of-Service (QoS) requirements of
higher-priority flows while keeping fairness among classes
and preventing starvation of low-priority traffic.

In Weighted Fair Queueing (WFQ) schedulers such as
Self-Clocked Fair Queueing (SCFQ) [1] and other rate-
proportional service disciplines [2], [3], [4], queue weights
are used to provide per-flow1 bandwidth guarantees: The
link share of backlogged connections is proportional to
queue’s weight, and excess bandwidth is distributed in the
same manner. Flows that are significantly below their re-
served bandwidth share will experience less delay. This
means that delay-sensitive services such as Voice-over-IP
(VoIP) can be implemented using WFQ only in combi-
nation with a token bucket at the ingress node and that

1In general the term micro-flow is defined by the 5-tuple of source
and destination address and port number, and the protocol number in the
IP header of the packet. Macro-flows may consist of a large number of
micro-flows that form a flow aggregate. For the sake of simplicity, this
paper refers to flow aggregates simply as flows, and to a single micro-flow
as a flow hence.

the token bucket rate is set lower than the reserved rate.
In Class-Based Queueing (CBQ) [5], delay differentiation
can be achieved using a priority-based packet scheduling
algorithm for bounded traffic classes. In all these different
schemes, thresholds (for scheduler and token buckets) have
to be set carefully and often their meaning is not intuitive.
Usually, this is done in a static manner when the network
is set up and often default parameters are not modified at
all.

This paper focuses on a new threshold-based buffer-
management scheme that consists of a combination of Dif-
ferentiated Random Drop (DRD) [6] and virtual schedul-
ing. Unlike other known schemes, the proposed scheme
supports simultaneous bandwidth and delay differentiation
and has the following advantages:

• Dynamic drop rate adaption of traffic classes,
• efficient and early congestion avoidance, and
• easy setting up of thresholds.

It will be shown that the scheme is suitable for a Diff-
serv [7] enabled network, where it can be used to im-
plement relative QoS guarantees in Assured Forwarding
(AF) [8] per-hop-behaviors.

The elements of active buffer management are algo-
rithmic droppers, packet-marking strategies, and schedul-
ing algorithms. Several extensions that are combined
in a flow-and-queue threshold-based buffer-management
scheme use active buffer-management elements. These ex-
tensions are fundamental to fair packet dropping and better
overall buffer usage. Furthermore DRD is briefly intro-
duced as an efficient congestion avoidance algorithm. It
will be shown that DRD in conjunction with threshold-
based buffer management and simple first-come first-
served (FCFS) scheduling is able to provide service dif-
ferentiation in terms of dynamic and adaptive packet drop
rates, which are relative to other queues in the system. The
efficiency of a virtual scheduler, which is the key to band-
width and delay differentiation, is compared to that of a
simple FCFS scheduler using extensive simulations real-

2

corresponds
to

Classifier

Packets

Flows

Per−Queue Thresholds
Per−Flow Thresholds

A−X:
a−y:

����������������������
����������������������

���
���
���
���

���
���
���
���

����������������������

����������������������
	�	�		�	�		�	�	

�

�

�

Scheduler

Flows

Total Buffer Space

Queues

A

B
C D X a

b
c
d
e

y

1 2 3 4 N

Fig. 1. Architecture of buffer management.

ized in a modified version of the network simulator ns [9]
that was specifically extended for this purpose.

The remainder of this paper is organized as follows.
Based on the detailed discussion of the threshold-based
buffer management in Section III, the virtual scheduler
is introduced in Section IV. A simulation model utilizes
the Diffserv Architecture to provide insights of the com-
bination of FCFS and DRD with a virtual scheduler (Sec-
tion V). Finally, Section VI summarizes the advantages
and draws conclusions.

II RELATED WORK

In [10] Drovolis et al propose a proportional differentia-
tion model to refine and quantify relative service differen-
tiation. Two packet schedulers that approximate the model
are introduced and evaluated in simulations. The propor-
tional model is applied on queueing-delay differentiation
only and leaves the problem of coupled delay and loss dif-
ferentiation for future work.

In [11] Risso discusses Decoupled Class Based Schedul-
ing (D-CBQ), a CBQ-derived scheduling algorithm that
uses new link-sharing guidelines to decouple bandwidth
and delay for bounded classes. The algorithm improves

Queue

Threshold
Minimum Maximum

Threshold
Maxbuffer

1

0
0

p

Flows

Fig. 2. Examples of probability functions.

delay characteristics of bounded classes compared to CBQ.
Whereas setting higher priorities (that means lower delays)
no longer leads to more bandwidth allocated, incoming
traffic still has to be limited by means of an additional to-
ken bucket filter. Note that the impact on delay and band-
width using unbounded classes has not been studied in a
severely overcharged network environment.

III THRESHOLD-BASED BUFFER MANAGEMENT

Figure 1 shows a flow-and-queue threshold-based
buffer-management scheme [6]. Thresholds are assigned
to flows and queues. Flows may consist of a large number
of micro-flows that form a flow aggregate. As can be seen
on the left-hand side, each of these flows is attributed to
one queue and several flows can enter the same queue. In
general, packets with the same QoS needs will enter the
same queue although there may be multiple queues having
approximately the same properties to differentiate for ex-
ample between TCP and UDP traffic. On the right-hand
side, the same flows are shown in the context of overall
buffer space. The process of packet classification will not
be discussed as it would exceed the scope of this paper.

As indicated by its name, flow-and-queue threshold-
based buffer management is a scheme primarily based on
two thresholds. The first threshold limits global buffer oc-
cupancy of a flow and is called the per-flow threshold.
This means that flows exceeding their per-flow threshold
undergo a special treatment such as marking or dropping
packets. Marking and dropping depends on the type of
buffer management and will be discussed later. Per-flow
thresholds are measured relative to the total used buffer
space.

The second threshold is a per-queue threshold, which
allows a segmentation of the available buffer space and is
compared to the buffer space used by this queue. When
the per-queue threshold is exceeded, packets have to be
dropped to limit the maximum packet delay. When used
with no additional strategies, the per-queue threshold acts
as a “hard” dropping policy. Hard means that packets may
be suddenly dropped in bursts when the queue size exceeds
the threshold. Clearly this behavior is not at all desirable.
An early dropping policy such as Random Early Detection
(RED) [12] or DRD should be combined with this thresh-

3

Packet Arrival

ok ?

Threshold

H
ar

d
D

ro
ps

Per-Queue

available ?

Buffer Space

Yes

Yes

Drop Packet

Threshold

ok ?
Mark Packet

NoPer-Flow

Yes

No

No

R
an

do
m

 D
ro

ps

Enqueue Packet

Congestion Avoidance Scheme
using a Virtual Scheduler

Pa
ck

et
 M

ar
ki

ng

Drop Decision
triggers

Fig. 3. Algorithmic dropper.

old. For this purpose DRD will be introduced in the next
Section. Later in this paper it will be shown that DRD out-
performs traditional RED and has additional useful prop-
erties.

Using per-queue thresholds allows more than the real
existing buffer space to be allocated to queues as opposed
to hard segmented buffer spaces as used in [13]. This
means that the sum of all per-queue thresholds may ex-
ceed the total available buffer space. The advantage of
such a strategy is that it supports larger bursts of a flow
when other flows are on a low buffer-usage level or not
backlogged at all and, therefore, uses less global buffer
space. On the other hand when all flows send at a peak
rate, the fixed per-queue buffers cannot be fully exploited
at the same time. At this point the per-flow threshold will
act as a limiter. In conjunction with RED or DRD, this
limit is not a hard limit and therefore does not cause bursty
packet drops. The service rate will no longer be absolute
but rather relative to other classes. This is even mandatory
for giving best-effort traffic the capability to take advan-
tage of unused bandwidth.

III-A Hard dropping scheme

The simplest buffer-management scheme known con-
sists of dropping packets when no more buffer space is
available. This strategy commonly used in the past and

even today, turns out to be inadequate for performing ef-
ficient and fair packet forwarding even when used with
fair queuing. Packets are often dropped in “bursts” from a
single flow, whereas other flows increase their traffic even
more. As a result, fairness suffers and QoS requirements
simply cannot be guaranteed.

Adding flow-and-queue threshold-based buffer manage-
ment enables buffer sharing and priority handling. In ad-
dition to dropping when no buffer space is available, pack-
ets are dropped when one or both thresholds are exceeded.
The simulations discussed in [6] show that such a simple
flow-and-queue threshold-based buffer management is not
sufficient per se to guarantee services as defined in Diff-
serv.

In general, the thresholds used in this mechanism act
as a hard limit. During congestion periods no indication
is performed, and packets are suddenly dropped in large
bursts once a threshold has been exceeded. There must be
some additional packet-dropping strategies to avoid burst
drops and to avoid synchronization of TCP sources.

III-B Softening hard limits

One way to overcome the hard dropping nature of a
threshold is to introduce a steadily increasing probability
function depending on the average queue size (Figure 2).
A linearly increasing function is used because of its sim-
plicity: it is sufficient to add an additional threshold that
can be as simple as a default percentage of the per-flow
threshold. The two thresholds together are then used as a
lower and upper limit (max/min per-queue thresholds).

The size of the linearly increasing section has to be set
relative either to the global buffer space or to allocated
queue space. Too small a value does not overcome the
bursty drop problem and too large a size of the linearly in-
creasing section will introduce premature and unnecessary
packet drops. Without going into more details concerning
the optimum setting, which would be beyond the scope of
this paper, experiments have shown that a value of approx-
imately 50% is reasonable [12].

III-C Introducing packet marking

Service differentiation within a flow can be achieved by
introducing a set of drop precedences. A rather simplis-
tic approach would be to just mark all packets that have a
higher precedence than the low default drop precedence.
In doing so, however, almost exlusively packets having a
higher drop precedence will be dropped and differentiation
between more than two drop precedences will no longer be
feasible. Therefore, the proposition is to assign per-flow
thresholds to drop precedences and each drop precedence
gets its per-flow threshold. As mentioned, multiple flows
with different per-flow thresholds may coexist within the
same queue. Marked packets in a queue may belong to
different flows and no distinction according to the initially

4

Packet
Arrival

D
ro

pp
er

A
lg

or
ith

m
ic

Queue Lengths
Adapt Virtual Per-Queue

Thresholds

EF & AFx1

AFx2

AFx3

BE

1

0.8

0.6

0.4

Total Buffer Space

EF

AF1y

AF2y

AF3y

BE

1 0.4

0.20.4

0.4

0.4

0.2

0.2

0.140.2

C
la

ss
if

ie
r

Drop
Decision

Scheduler

Scheduler
Real WFQ

Virtual

Per-Flow Thresholds

Drop in one of the queues

Fig. 4. Architecture of buffer management.

given drop precedence is done. The marking is used when
drop decisions have to be made. Thus the per-flow drop
rate increases with decreasing per-flow threshold. Packet
marking can be seen as a previous conviction with a scope
that is strictly limited to the actual router.

If per-flow thresholds are used to trigger packet drops,
it is easy to see that a small per-flow threshold will pre-
vent a flow completely from obtaining any service when
network traffic is high. A part of the global buffer space
remains unused at this time because it is reserved for other
traffic classes that perhaps will not occupy this space in
the near future. One way to improve buffer usage is to in-
crease the per-flow threshold but then service differentia-
tion becomes more difficult because these thresholds move
closer together. Nevertheless, an arriving packet belong-
ing to such a flow could be enqueued and marked. If
packets need to be dropped later, those marked should be
dropped first. As a result buffer space is used more ef-
ficiently and more packets are served overall. A sophis-
ticated packet-dropping scheme can take into account the
per-queue buffer usage as well as a relative queue priority,
and then select a packet to be dropped.

III-D Algorithmic Dropper and Congestion Avoidance
Scheme

Upon packet arrival, the algorithmic dropper examines
wether the packet should be enqueued and an additional
action taken. An additional action is an action that tries to
prevent congestion in the network. Figure 3 illustrates the
algorithmic dropper used in our scheme. The algorithmic
dropper consists of three parts: The first is used for con-
gestion avoidance and evaluates whether an existing packet
has to be dropped in one of the queues by choosing a queue

randomly. If yes, a packet drop in this queue is triggered.
The second part consists of hard dropping limits (tail-drop)
for queue and buffer overflows. The congestion avoidance
scheme should drop packets earlier so that tail-drops occur
only rarely. In the third part, packet marking to implement
drop precedences in a queue occurs.

The congestion-avoidance block uses DRD to evaluate
potential packet drops. The main goal of the DRD scheme
is to introduce a dynamic per-queue drop probability while
adding relative dependency among the various queues in
the system. This will primarily allow service differen-
tiation such as “better than” another class. Each time a
packet arrives, the following congestion-avoidance mech-
anism is performed before processing of that packet con-
tinues. Using a dynamic per-queue probability, one of the
queues is chosen randomly and random early discard is
then performed in this queue. The per-queue probability
pi is evaluated as follows: Every queue is assigned a fixed
priority equal to the queue number i. Thus the queues are
sorted according to their priority. The per-queue proba-
bility is proportional to the number of bytes in the queue
plus the number of bytes in all higher-priority queues. This
is a more general approach than is used for RIO in [14].
Clearly queues containing no packets have zero per-queue
probability. Note that priorities are introduced only for
dropping behavior and not, as for example in CBQ [5], as
a per-queue priority used for scheduling purposes. In ad-
dition, higher priority does not imply lower packet delay.
The per-queue probability pi can be written as

pi =

{

C
∑i

k=1
bk if bi 6= 0

0 if bi = 0
, (1)

where bk is the number of bytes in queue k. For N queues

5

Pareto On/Off

CBR & multiple

Sources

Telnet 1

TCP 6

TCP 1

Router

Destination

10Mb

10Mb

10Mb

EF

AF 1

AF 2

AF 3

BE

Telnet 10

Fig. 5. Simulation topology.

Maximum and Minimum Per−Queue Thresholds Per−Flow Thresholds

EF & AFx1

AFx2

AFx3

BE0.4

0.6

0.8

1

Total Buffer Space

Scheduler

low

high EF

AF1y

AF2y

AF3y

BE

0.4

0.4 0.2

0.2 0.14

0.4 0.2

0.20.4

1

Pr
io

ri
ty

Fig. 6. Per-flow and per-queue thresholds.

the normalization is

N
∑

i=1

pi = 1 , (2)

and the constant C is then given by N queues

C =
1

∑N
j=1,bj 6=0

∑j
k=1

bk

. (3)

Finally, if a packet in that queue has to be dropped, by
preference a marked one is chosen.

IV VIRTUAL SCHEDULER

A scheme as the one illustrated in the preceding section
is able to support relative service differentiation even with
a simple FCFS scheduler [6]. Service classes in terms of
“better than” can be implemented, and differentiation is
expressed in lower drop rates for lower-numbered (higher-
priority) queues. Whereas the scheme is able to support
minimum bandwidth guarantees and fair excess bandwidth
allocation, it fails in differentiating packet delays due to the
simple FCFS scheduler. The idea is to combine two sched-
ulers while keeping their advantages: The first scheduler
will maintain fair packet scheduling and enable delay dif-
ferentiation. For this a WFQ scheduler can be used. The

second scheduler will be responsible for early congestion
avoidance and start dropping packets if needed. It main-
tains virtual queue lengths used by the congestion avoid-
ance scheme as a feedback. This scheduler is called virtual
because it does not directly influence the departure time of
packets in the buffer. Its result, the virtual queue lengths,
are only used by the algorithmic dropper to perform drop
decisions.

Figure 4 illustrates the architecture of the buffer man-
agement scheme using a virtual scheduler. As basis the
scheme from Section III has been taken and enhanced to
support a virtual scheduler. The buffer is divided into sev-
eral queues. The number of queues is configurable, and the
queues are served in a WFQ manner. Within each queue
several parameters are given (queue number, max/min per-
queue threshold and queue weight). In contrast to other
schemes, these parameters are fixed at the beginning once
and for all, and no tuning is required later on. In addition,
the parameters in the queues with relative delay differenti-
ation are equal (queues 2 to 4), thus making configuration
easy. In Section V it will be shown that such a scheme is
capable of providing a dedicated service class to a given
queue. When a packet arrives, it will go through the al-
gorithmic dropper with the only modification, that virtual
queue lengths are used instead of the real ones, to trigger a
packet drop. Meanwhile all packets are also served by the
virtual FCFS scheduler.

Buffer management becomes quite difficult because the
two schedulers serve packets simultaneously. Therefore,
a special packet tag that is attributed to each of the pack-
ets and contains all necessary information has been intro-
duced. In other words, if a packet has been treated by the
real scheduler (and therefore has been sent to the outgo-
ing link) but is not yet served by the virtual scheduler, the
packet tag will remain stored in memory while the space
used for the real packet can be freed. If a packet has been
treated first by the virtual scheduler but not yet by the real
scheduler, the packet tag and the packet itself will remain
stored in memory until the packet has been served by the
real scheduler. It is clear that by introducing packet tags,
which can remain in memory longer than a packet life-
time, the overall memory usage will increase. Section V
discusses this issue, and shows that memory increase is
limited.

IV-A Parameter setting guidelines

The following guidelines should help set the parameters
of a flow-and-queue threshold-based buffer-management
scheme with N queues:
• The queue weight wi corresponds to the minimum band-
width guarantee for the service class in queue i and is a part
of the Service Level Agreement (SLA).
• For equal per-queue threshold settings, lower-delay
classes are in higher-numbered queues.

6

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

60 80 100 120 140

A
F

L
in

k
U

sa
ge

 F
ra

ct
io

n

AF Bandwidth [% of reserved rate]

AF1y
AF2y

AF3y
AF1x,AF2x,AF3x with SCFQ

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

60 80 100 120 140

B
E

 B
an

dw
id

th
 [

bi
t/s

]

AF Bandwidth [% of reserved rate]

BE (FCFS)
BE (SCFQ)

BE (FCFS & no packet marking)

Fig. 7. Comparing AF and BE bandwidth for FCFS and SCFQ scheduling.

• Delay-insensitive queues get a high per-queue threshold
to profit from unused buffer space.
• For classes that contain adaptive flows, the minimum
per-queue threshold is set to half the maximum per-queue
threshold. Non-adaptive flows that do not react to early
packet drops have equal minimum and maximum per-
queue thresholds.
• Drop precedences can be set equal over a set of queues.
The higher the per-flow threshold, the lower the drop prob-
ability. Setting the per-flow threshold to 1 disables packet
marking for this flow, but packets can still be dropped in a
severely overloaded network.

V SIMULATION RESULTS

The simulations described here have been made in a
Diffserv-enabled network environment. Flow-and-queue
threshold-based buffer management maps well to the Diff-
serv classes [8], [15] for the following reasons:
• For a system to scale well, the number of queues is
important. It is clear that the flow-and-queue threshold-
based buffer management does not treat micro-flows indi-
vidually, but only applies the service defined for the corre-
sponding service class. Thus, the buffer-management sys-
tem keeps the queue number low, generally not more than
several dozens in a Diffserv environment. Packet classifi-
cation is based on the Diffserv Codepoint, but other classi-
fication rules could also be envisaged.
• Setting a low per-queue threshold assures low packet de-
lay, and bandwidth is guaranteed by the queue weight of
the WFQ scheduler. This can be used to implement Expe-
dited Forwarding (EF) per-hop-behavior.
• Using a virtual scheduler, service classes in terms of
“better than” or Olympic service [8], which consists of
three service classes, namely gold, silver and bronze, can
be implemented. The Diffserv Assured Forwarding (AF)
per-hop-behavior can be used to identify the service class
of a packet.
• Support of drop precedences: Various packet markers

0

0.02

0.04

0.06

0.08

0.1

0.12

60 80 100 120 140

Pa
ck

et
 D

ro
p

R
at

e

AF Link Usage [%]

AF11
AF12
AF13

AF21
AF22
AF23

AF31
AF32
AF33

BE1
BE2
BE3

EF

Fig. 8. Packet drop rate for various traffic classes using a FCFS sched-
uler.

have been proposed in the Diffserv working group [16],
[17]. These markers use the result of a traffic meter to set
the appropriate Diffserv Codepoint (DSCP). They should
not be confused with packet marking as introduced in this
paper. The marking strategy proposed here differs from
these Diffserv markers because it acts only locally in a
router. Per-flow thresholds are assigned to Diffserv drop
precedences in AF to fulfill dropping differentiation. Al-
though packets are only either marked or not, this is suffi-
cient to support multiple levels of drop precedences. The
DSCP is not modified in the process, but can influence the
marking done by the buffer management.

V-A Service Differentiation for Assured Forwarding
without Virtual Scheduler

In this Section FCFS and SCFQ schedulers without a
virtual scheduler are compared. These two scheduler types
have been chosen to discuss their main properties when
combined with DRD and to show that these properties can-
not be maintained at the same time. The topology of the
simulation is shown in Figure 5, where multiple sources as

7

TABLE I

Traffic sources.

Flow Sources Rate
[% of reserved rate]

EF Telnet Sources
AF1y CBR & Pareto On/Off from 50% to 150%
AF2y CBR & Pareto On/Off from 50% to 150%
AF3y CBR & Pareto On/Off from 50% to 150%
AF3y CBR & Pareto On/Off from 50% to 150%
BE greedy TCP sources

0

0.05

0.1

0.15

0.2

60 80 100 120 140

Pa
ck

et
 D

el
ay

 [
s]

AF Link Usage [%]

EF (SCFQ)
AF1y (SCFQ)
AF2y (SCFQ)

AF3y (SCFQ)
Adaptive BE (SCFQ)
EF,AFxy,BE (FCFS)

Fig. 9. Comparing packet delays.

given in Table I share the same outgoing link at a router.
The router uses the DRD scheme as explained in Section
III-D. The first queue is assigned to an EF Diffserv class.
Ten Telnet applications generate the traffic for this flow.
This traffic is substantially lower than the reserved rate,
and other flows may borrow from this unused bandwidth.
The following three queues treat three AF Diffserv classes:
AF1, AF2 and AF3. These flows are generated by CBR
and multiple Pareto on/off sources, which create an equal
number of all three drop precedences in each AF class.
The sources have been chosen such as to be extremely
bursty. The average sending rates for all three AF Diffserv
sources are equal and vary from 50 to 150% of the allo-
cated bandwidth. The highest-numbered queue is desig-
nated for adaptive best-effort (BE) traffic. A set of greedy
TCP connections generates this traffic. All queues have
equal weights and, therefore, equal reserved bandwidth.
All links are set to 10 Mbit/s. The maximum buffer space
is set to 160 kBytes. During the simulation, all sources are
sending data at the rates given in Table I.

The buffer settings are shown in Table II and Figure 6.
The per-queue thresholds are set to guarantee a maximum
delay for each class. The terrassing of the per-flow thresh-
olds within an AF class is important to realize drop prece-
dences. The thresholds AFx1, AFx2 and AFx3 are the

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

60 80 100 120 140 160 180 200

Pa
ck

et
 D

el
ay

 [
s]

AF Link Usage in % of Reserved Rate

 EF AF1y AF2y AF3y BE

Fig. 10. Packet delays for different classes.

same for all AF queues. When setting up the thresholds,
no differentiation among the same drop precedence of dif-
ferent AF classes has to be performed. All AF classes start
dropping packets at the same per-queue limit. The best-
effort RED threshold is set to 40% of its per-queue thresh-
old to enable early congestion avoidance even when the
buffer space has been almost completely filled up by other
sources.

TABLE II

Buffer thresholds.

Flow Thresholds
Per-Flow Per-Queue

EF 1.0 0.2
AFx1 1.0
AFx2 0.8 0.4
AFx3 0.6
BE 0.4 1.0

The main goal of introducing packet marking as men-
tioned in Section III-C is to support service differentiation
in the form of AF drop precedences and to improve over-
all buffer usage. Packet marking does not influence packet
order, and packets belonging to the same traffic class will
leave the router in the same sequence as they arrived.

The results shown in Figure 7 illustrate the differentia-
tion among AF classes when FCFS or SCFQ scheduling
is used. With SCFQ the scheduler completely dominates
the bandwidth allocation. Minimum-bandwidth guaran-
tees for best-effort traffic can be given with both schedulers
if packet marking is used. Without packet marking, best-
effort traffic starts oscillating and loses reserved bandwidth
even with SCFQ scheduling.

With the given per-flow thresholds, every AF class is
split into three drop precedences (Figure 8). Because of the
high network load (when AF classes are sending more than
120% of the reserved rate), the buffer space of a router is

8

low drop precedences:

high drop precedences:
- AFx2
- AFx3

- AFx1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

60 80 100 120 140 160 180 200

Pa
ck

et
 D

ro
p

R
at

e

AF Link Usage in % of Reserved Rate

AF11
AF12

AF13
AF21

AF22
AF23

AF31
AF32

AF33

Fig. 11. Packet drop rate for all AF classes including the drop prece-
dence.

almost completely filled up at any time of the simulation,
and the third per-flow threshold is too low to take effect.
Nevertheless the Diffserv requirement of having at least
two drop levels is satisfied. Relative service differentiation
in terms of packet drop rates is clearly visible.

The packet delays are shown in Figure 9. For schedul-
ing, SCFQ scheduler takes the packet arrival time as well
as the amount of packets being stored in a queue into ac-
count, whereas in a FCFS scheduler all queues experience
the same average delay because FCFS cannot distinguish
among the queues. Therefore with FCFS scheduling, the
average delays for traffic classes other than best-effort are
shifted towards the best-effort values when the actual AF
bandwidth is lower than the reserved rate. However, delays
have an upper bound given by the per-queue thresholds.
This is not the case for FCFS scheduling, and only overall
buffer occupancy influences packet delay. To be more pre-
cise, decreasing per-queue thresholds would lower overall
buffer usage because packets have already been dropped
earlier to avoid congestion, and would have an equal ef-
fect on packet delays in all queues. On the other hand, we
have seen that a WFQ scheduler imposes its fairness prop-
erties in a way that traffic differentiation is only feasible
through static threshold settings. Although the average de-
lay can be kept within an acceptable range, no significant
delay differentiation can be realized with FCFS. Non-best-
effort delays are always larger with FCFS for sources using
less than their full share of bandwidth [18]. Here packet
delay could be improved by using a virtual scheduling al-
gorithm or a “weak” WFQ scheduler that allows higher-
priority packets to bypass others.

V-B AF for Gold, Silver and Bronze Services using a Vir-
tual Scheduler

Above, buffer settings to support Diffserv have been in-
troduced and tested using only one scheduler. To facili-
tate comparison of the results shown above with those de-
scribed below, the same settings have been used but a vir-
tual scheduler has been added. Again, the incoming traffic

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.05 0.1 0.15 0.2

Fr
eq

ue
nc

y

Packet Delay [s]

AF1y AF2y AF3y

Fig. 12. Delay distribution for AF classes at 200% of reserved rate.

-0.05

0

0.05

0.1

0.15

0.2

0.25

-15 -10 -5 0 5 10 15

R
es

id
ua

l Q
ua

nt
ile

Normal Quantile

EF AF1y AF2y AF3y BE

AF2

AF3

BE EF

AF1

Fig. 13. Quantile-to-quantile plot for all delay distributions (AF classes
sending at 200% of reserved rate). The straight line indicates a lin-
ear least-squares fit.

for the AF classes stems from CBR and multiple Pareto
on/off sources. The AF sending rate range has been in-
creased to 200% of the reserved rate in order to show that
even with severe oversubscription tail drops are rare.

The above-described results show how packet drop rate
differentiation can be achieved with FCFS while packet de-
lay remains the same for all packets traversing the router.
The virtual scheduler scheme has been introduced to over-
come this weakness.

Figure 10 shows the average packet delays for all
queues. Surprisingly, what was better in terms of drop
precedence in simple DRD now becomes worse in terms
of delay: This means that the packet delay is shorter in
higher-numbered AF classes and therefore AF3x has the
best performance in terms of delay. As AF itself does
not specify any particular relationship between AF per-
hop-behaviors, the AF numbering introduced earlier will
be kept. In addition it can be seen that the delay is
bounded for each class separately. A intuitive explanation
of this result is that DRD combined with a virtual sched-

9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

60 80 100 120 140 160 180 200

Pa
ck

et
 D

el
ay

 [
s]

AF Link Usage in % of Reserved Rate

 EF AF1y AF2y AF3y BE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

60 80 100 120 140 160 180 200

Pa
ck

et
 D

el
ay

 [
s]

AF Link Usage in % of Reserved Rate

 EF AF1y AF2y AF3y BE

0

0.05

0.1

0.15

0.2

0.25

60 80 100 120 140 160 180 200

Pa
ck

et
 D

ro
p

R
at

e

AF Link Usage in % of Reserved Rate

AF11 AF12 AF13

0

0.05

0.1

0.15

0.2

0.25

60 80 100 120 140 160 180 200

Pa
ck

et
 D

ro
p

R
at

e

AF Link Usage in % of Reserved Rate

AF31 AF32 AF33

Fig. 14. Packet delay and drop rate while only one AF class varies.

uler will start dropping packets earlier in higher-numbered
AF classes because of the higher DRD drop probability
of those classes, whereas the real scheduler maintains the
fair bandwidth allocation and therefore assures equal drop
rates for equal incoming traffic.

In contrast to the simple DRD case, with FCFS packet
drop rates are similar for all AF classes. Again only two
levels of drop precedence in one class are visible (Fig-
ure 11). It will be shown later that this is only the case
when all classes send at the same rate.

The results clearly show that the virtual scheduler
scheme is able to differentiate packet delays while giving
a strict bandwidth guarantee according to the configured
weight. Excess bandwidth is distributed according to the
queue weights.

V-C Delay distribution

Packet delays are distributed approximately normally, as
shown in Figures 12 and 13. The latter is a quantile-to-
quantile plot, in which the straight line indicates a linear
least-squares fit. The slightly S-shaped plots indicate that
the distribution is peakier and has shorter tails than a nor-
mal distribution. This stems from the fact that delays can-
not be negative and that overall buffer space is limited. The

delay differentiation is due to the intrinsic behavior of the
scheme rather than to sudden queue flushes or other unde-
sired effects. In addition to the lower delay, the AF3y class
also has a smaller delay variance, making it an attractive
candidate for a “better than” service class.

V-D Varying incoming traffic for one AF class

In the preceding simulation, the AF sending rate has
been varied for all AF classes. Now the rate is fixed to
100% of the reserved rate, and only one class at a time
varies from 50% to 200%.

Figures 14 show the packet delay and the drop rate when
only one incoming rate (AF1y or AF3y) varies. As ex-
pected, it confirms the results obtained in Section V-A. In
addition, a clear drop precedence differentiation between
all three precedences, which has disappeared in the previ-
ous simulation, is now distinguishable again. This lets us
presume that delay might depend on the number of queues
in the system. This has not been tested in this paper, and is
left for future work.

V-E Comparison to the basic RED algorithm

In a network environment with severe oversubscription
and thus offered loads that exceed the transmission capac-

10

TABLE III

RED vs. DRD with virtual scheduler.

Tot. offered Rate Early drops Tail drops
RED 11.98 Mbit/s 44639 92459
DRD 11.71 Mbit/s 120074 2391

ity by far, RED has turned out to be insufficient for efficient
congestion indication if the number of TCP connections
is high or traffic does not behave in a TCP friendly way.
Here we compare DRD congestion avoidance using a vir-
tual scheduler with traditional RED. The total offered load
for the simulation has been set to 120% of the available
rate. Packet drops are counted during the 100 seconds of
simulation time. Table III shows that forced packet drops,
known as tail-drops, have been significantly reduced us-
ing DRD and virtual scheduler, and is less than 2% of all
dropped packets. RED drops more than two thirds of all
dropped packets because of buffer overflow. The conclu-
sion is that DRD with virtual scheduling has a excellent
potential for efficient early congestion avoidance.

V-F Packet tags

The new scheme needs more memory, as already men-
tioned, mainly because additional packet tags have to be
stored. First of all, it has to be shown that the amount of
additional tags is bounded. The set of tags in a queue i is
given as Ti, and the subsets of real and virtual tags are T r

i

and T v
i . The use of a second scheduler leads to an overall

increase of packet tags in the system. The set of extra tags
is written as T e

i = T v
i \ (T r

i ∩T v
i). If only a real scheduler

is used then Ti = T r
i , otherwise i.e. with a virtual sched-

uler, Ti = T r
i ∪ T v

i . Figure 15 shows that under heavy
load in the AF1 queue |TAF1 \ T r

AF1
| → 0 and T v

AF1
⊂

T r
AF1

, whereas in the AF3 queue |TAF3 \ T v
AF3

| → 0
and T r

AF3
⊂ T v

AF3
. The consequence is that for the for-

mer the set of extra tags is |T e
AF1

| → 0 and for the latter
|T e

AF3
| → |T v

AF3
| 6= 0, causing the increase in the total of

packet tags.
We found that

2|T r| ≥ |T | (4)

holds for all offered loads. As compared to a packet these
tags are small, the impact on overall memory increase is
justifiable.

VI CONCLUSION

In this paper we introduced a two-threshold-based
buffer-management system that can be used for relative
service differentiation in Diffserv AF per-hop-behaviors.
The main new parts are the DRD congestion avoidance
scheme, internal packet marking, and a virtual sched-
uler. The DRD congestion avoidance scheme enables dy-

0

100

200

300

400

500

600

60 80 100 120 140 160 180 200

Pa

ck
et

 T
ag

s

AF Link Usage in % of Reserved Rate

AF1

max total
max real

max virtual

mean total
mean real

mean virtual

0
50

100
150
200
250
300
350
400
450
500

60 80 100 120 140 160 180 200

Pa

ck
et

 T
ag

s

AF Link Usage in % of Reserved Rate

AF2

max total
max real

max virtual

mean total
mean real

mean virtual

0
50

100
150
200
250
300
350
400
450

60 80 100 120 140 160 180 200

Pa

ck
et

 T
ag

s

AF Link Usage in % of Reserved Rate

AF3

max total
max real

max virtual

mean total
mean real

mean virtual

Fig. 15. Comparing AF and BE bandwidth for FCFS and SCFQ schedul-
ing.

namic and relative service differentiation even with a sim-
ple scheduler such as FCFS. The fact that no delay dif-
ferentiation is possible when used with FCFS led to the
introduction of a virtual scheduler scheme. By means of
simulations, it has been shown that a virtual scheduler is
a robust management scheme for heavy and bursty traffic
load. In conjunction with DRD, the scheme is able to per-
form relative delay differentiation of AF Diffserv per-hop-
behavior while guaranteeing minimum bandwidth and fair

11

excess bandwidth allocation. Moreover the scheme avoids
tail drops and, therefore, does not lead to TCP synchro-
nization effects. Compared to other schemes, DRD with a
virtual scheduler uses only few parameters (per-queue and
per-flow thresholds, queue priority and queue weight) that
are set at initialization time, and then requires no further
tuning.

Packet marking is an important enhancement to flow-
and-queue threshold-based buffer-management systems
that allows the implementation of at least two drop prece-
dences within a queue. In addition to optimizing overall
buffer usage, packet marking is even necessary to avoid
bursty packet drops. The influence of responsive and non-
responsive flows in the same queue can have a significant
impact on inter-flow fairness, but would exceed the scope
of this paper and is left for future work.

REFERENCES

[1] S.J. Golestani. A Self-Clocked Fair Queuing Scheme for Broadband
Applications. ACM Computer Commun. Rev., April 1994.

[2] A.K. Parekh and R.G. Gallager. A Generalized Processor Sharing
Approach to Flow Control. June 1993.

[3] D. Stiliadis and A. Varma. Design and Analysis of Frame-Based
Fair Queueing: A New Traffic Scheduling Algorithm for Packet-
Switched Networks. May 1996.

[4] J. C.R. Bennett and H. Zhang. WF2Q: Worst-case Fair Weighted
Fair Queueing. 1996.

[5] S. Floyd and V. Jacobson. Link-sharing and Resource Management
Models for Packet Networks. IEEE/ACM Trans. on Networking,
Vol. 3, No. 4, August 1995.

[6] R. Pletka, P. Droz, and R. Haas. A New Buffer Management
Scheme for IP Differentiated Services. Technical Report RZ 3216
(# 93262), IBM Research, Zurich Research Laboratory, March
2000.

[7] S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
An Architecture for Differentiated Services, RFC2475, December
1998.

[8] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured For-
warding PHB Group, RFC2597, June 1999.

[9] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Han-
dley, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. McCanne,
R. Rejaie, P. Sharma, K. Varadhan, Y. Xu, H. Yu, and D. Zappala.
Improving Simulation for Network Research. Technical Report 99-
702b, University of Southern California, March 1999.

[10] C. Drovolis, D. Stiliadis, and P. Ramanathan. Proportional Differen-
tiated Services: Delay Differentiation and Packet Scheduling. ACM
Computer Commun. Rev. (SIGCOMM ’99), September 1999.

[11] F. Risso. Decoupling Bandwidth and Delay Properties in Class
Based Queueing. Dipartimento di Automatica e Informatica, Po-
litechnico di Torino, 2000.

[12] S. Floyd and V. Jacobson. Random Early Detection Gateways for
Congestion Avoidance. ACM Trans. on Networking, August 1993.

[13] R. Guérin, S. Kamat, and V. Peris. Scalable QoS Provision Through
Buffer Management. October 1998.

[14] D. Clark and W. Fang. Expicit Allocation of Best Effort Packet
Delivery Service. ACM Trans. on Networking, Vol. 6, No. 4, August
1998.

[15] V. Jacobson, K. Nichols, and K. Poduri. An Expedited Forwarding
PHB, RFC2598, June 1999.

[16] J. Heinanen and R. Guerin. A Single Rate Three Color Marker,
RFC2697, September 1999.

[17] J. Heinanen and R. Guerin. A Two Rate Three Color Marker,
RFC2698, September 1999.

[18] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of
Fair Queuing Algorithm. ACM Computer Commun. Rev., pp. 3-12,
1989.

