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Abstract— Active Queue Management (AQM) tries to find a
delicate balance between two antagonistic Internet queuing re-
quirements: First, buffer space should be maximized to accommo-
date the possibly huge transient bursts; second, buffer occupation
should be minimum so as not to introduce unnecessary end-
to-end delays. Traditional AQM mechanisms have been built
on heuristics to achieve this balance, and have mostly done
so quite well, but often require manual tuning or resulted in
slow convergence. In contrast, the PURPLE approach predicts the
impact of its own actions on the behavior of reactive protocols
and thus on the short-term future traffic without per-flow state.
PURPLE allows much faster convergence of the main AQM
parameters, at least towards a local optimum, thereby smoothing
and minimizing both congestion feedback and queue occupancy.
To improve the quality of the prediction, we also passively
monitor (using lightweight operations) information pertaining to
the amount of congestion elsewhere in the network, for example,
as seen by flows traversing this router.

I. INTRODUCTION

The predominant transport protocol in the Internet is TCP,
which provides reliable delivery and response to congestion.
TCP, when tasked with bulk transfers, will slowly but steadily
increase the transmission rate until it is notified of congestion,
whereupon it drastically reduces the transmission rate, only
to repeat the entire process [1]. The congestion indication is
traditionally delivered through packet loss, which is in turn
controlled by the router’s queuing policy.

Queuing policy in the Internet is governed by two antago-
nistic requirements: First, buffer space should be maximized
to accommodate sometimes huge transient bursts; often, suf-
ficient memory is provided to buffer an entire end-to-end
round-trip time’s (RTT) worth of link bandwidth [2]. Second,
buffer occupation should be minimum so as not to introduce
unnecessary end-to-end delays: if each of the often as many
as 30 routers between source and destination hosts were to
buffer 200 ms of traffic in both directions, each message would
require 6 s round trip, which clearly is not realistic.

Even though this extreme scenario is unlikely to ever
happen, it shows the importance of maintaining a low average
queue occupancy while allowing for large peaks. Several
requirements are coupled to end-to-end packet delivery, that
can be influenced by queuing mechanisms, and that ultimately
are all interrelated:
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1) Low packet-loss rates.
2) Short end-to-end delays, by controlling the contribution

of queuing delay.
3) High goodput is achieved by reducing the number of re-

transmitted packets, which in turn cause additional high
end-to-end delays. Goodput is defined as the effective
data rate observed by the application.

4) Ability to absorb bursts, which requires sufficient head-
room.

5) Stable queuing delays are beneficial for real-time appli-
cations such as voice transmission as well as for reliable
transport protocols, which need to be able to estimate
retransmission timeouts.

The traditional method of FIFO queues with tail-drop on
queue overflow do not fulfill these requirements very well,
because queues tend to oscillate between empty and full.
Therefore, Active Queue Management (AQM) was conceived
to improve performance of these metrics and to improve
interaction with TCP’s congestion control. TCP, like most
other protocols in the Internet that respond to congestion,
takes packet loss as an indication of network congestion. To
keep queue occupancy low, most instances of AQMs start
dropping packets (therewith indicating congestion) with low
probability already at small queue occupancy levels, and grad-
ually increase the congestion signal as the queue grows. This
causes the responsive protocols to reduce their transmission
rate and thus eventually reduce the queuing delay. Another
advantage of this approach is that losses no longer occur in
bursts, resulting in faster recovery from transmission losses.

Despite the importance of AQM, the actual mechanisms
proposed have mostly been built on heuristics to achieve their
goals. Even though most AQMs significantly improve on these
goals, they often need manual tuning or provide only slow
convergence [3]–[5].

The recent introduction of Explicit Congestion Notification
(ECN) [6] has opened new avenues. Without dropping packets
and thus causing a later retransmit or even a time-out, it is now
possible to indicate congestion to participating transmission
protocols by setting a mark in the packet header. This has the
potential to significantly improve goodput, but current AQM
mechanisms such as the industry standard RED [7] often need
to revert to packet loss.

The PURPLE approach, in contrast, predicts the impact of
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its own actions on the behavior of reactive protocols and
thus the short-term future traffic. PURPLE achieves this by
analyzing end-to-end information about the congestion state
in the network. PURPLE allows much faster convergence of
the main AQM parameters, at least towards a local optimum,
thereby smoothing and minimizing both congestion feedback
and queue occupancy. To improve the prediction, we also
passively monitor (using lightweight operations) information
pertaining to the amount of congestion elsewhere in the
network as seen by flows traversing this router.

A. Our Contribution

The design of PURPLE introduces three powerful new tools
into AQM research. First, we extend the current myopic view
of routers, which only consider the links they manage. Instead,
we extract end-to-end congestion information pertinent to the
packet flows traversing the managed links. This is done by
simply counting the ECN marks in the traversing packets,
which does not require any per-flow state. From this we derive
how much congestion has already been indicated by previous
routers and estimate how much congestion will be introduced
after the packets leave the router. According, this router can
fine-tune its contribution much more accurately.

Second, we are able to estimate flow RTTs by monitoring
ECN information embedded in packets, without requiring
knowledge of the detailed transport protocol semantics.

Third, we refrain from resorting to pure heuristics for AQM
and try to provide a solid foundation by controlling the traffic
stream using optimized parameters derived online from model-
based predictions. By using the extracted information, it is
possible to use the TCP steady-state model [1], [8] to predict
the reaction of the end systems and thus provide a more
accurate regulation of the control signal. Even though not
all TCP flows are governed by the steady-state equation, it
appears to be a good model even for the other flows.

Finally, we demonstrate the successful integration of these
three new tools into a strong new AQM mechanism and
compare PURPLE with other AQM schemes by means of simu-
lations. PURPLE significantly improves on the performance of
the best-known AQM mechanisms such as RED [7] and A-RED

[9], and successfully achieves the delicate balance between
queue-length minimization and throughput optimization. PUR-
PLE is also able to reduce the number of packet drops due
to buffer overflow drastically, creating benefits for both real-
time applications for which retransmission delays often are
intolerable and reliable transport protocols by reducing end-
system buffer-space requirements. The queuing delay is also
reduced, which again helps to improve protocol performance.

B. Organization

This paper is organized as follows. In Section II we describe
the PURPLE algorithm in detail. Section III evaluates PURPLE

and compares it with other well-known AQM schemes in
several scenarios. Then, Section IV provides the comparison
with related work, before the paper is concluded in Section V.

II. PURPLE

Here, we look at how we can use model-based parameter
optimization to control the traffic to the desired levels. First,
we discuss the model and the validity of its approximations
(Sections II-A and II-B). Later, in Section II-C, we describe
how to measure the necessary model inputs and in Section
II-D we outline some implementation issues.

A. Static Model

A simple and frequently used approximation of the steady-
state throughput Xn of a single TCP session has been derived
by Mathis et al. [1] as

Xn =
cn · Sn

Rn ·
√

pn

,

where the parameters have the following meaning:
• n is the current connection of a bundle of altogether N

streams (1 ≤ n ≤ N ),
• cn is a system constant close to 1, which depends on the

loss model and the TCP acknowledgment strategy (either
acknowledge every packet or delayed ACK),

• Sn is the maximum segment size (often around 1460
bytes),

• Rn is the RTT, and
• pn is the probability of a “packet loss,” or more gen-

erally, a packet indicating congestion anywhere between
source and destination. (The aggregation of one or more
individual indications into “events” by TCP is accounted
for by cn.)

This assumes a greedy flow, i.e., a flow that never has to wait
for the sending or receiving application.

The parameters cn and Sn typically are constant for a
given TCP connection. Also, Rn is quite stable if we assume
queuing delays to be relatively small. Thus the main parameter
to control TCP bandwidth is pn, the congestion indication
probability. This leads to one of the key observations behind
PURPLE:

If we want to scale the bandwidth Xn of a single TCP flow
by a factor γ, we merely need to scale p by 1/γ2, independent
of the other parameters, i.e., there is no need to measure or
manipulate cn, Sn, or Rn.

This can easily be seen by substitution and simplification:

γX = γ
cn · Sn

Rn ·
√

pn

=
cn · Sn

Rn ·
√

1

γ2 pn

.

As we will see, the loss/marking probability is trivial to
measure in an ECN environment. Moreover, it can easily be
influenced at a router, with the obvious limitation that no router
should unmark (or resurrect) packets that have been marked
(or dropped).

Now, let us move from a single connection to a bundle of
N simultaneous TCP sessions traversing node k. The total
bandwidth in the steady state is then calculated as

X =

N
∑

n=1

cn · Sn

Rn ·
√

pn

.
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Assuming that the cn and Sn are common among the links,
we obtain

X =

N
∑

n=1

c · S
Rn ·

√
pn

= c · S
N

∑

n=1

1

Rn ·
√

pn

.

Instead of treating the N sessions separately, we now simplify
them into a bundle of N identical “representative” sessions,
whose R is chosen such that p matches the real average drop
probability p between source and destination seen:

X = N
c · S

R · √p
.

To scale this aggregate by γ, we obtain

γX = N
c · S

R ·
√

1

γ2 p
+ e , (1)

where e is the error introduced because the formula is not
linear in p and because not all contributing flows match the
representative session. Under typical traffic loads, the various
en contributing to the total e =

∑

en will mostly cancel each
other out.

For a congested link, γ is determined as the ratio between
the link bandwidth L and the offered load O. (On an uncon-
gested link, a router does not modify p, as it has been set
because of a preceding congested link, which should not be
further congested.) By knowing γ and the original p, we can
thus easily calculate an approximate new p′, which will bring
the aggregate sender transmission rates much closer to the
desired rate. The resulting control loop will quickly converge
to the target value. This quick convergence will also manifest
itself in the simulation results.

B. Model Dynamics

So far, we have only considered the steady state, assuming
a simple total end-to-end probability. We will now split p into
three probabilities: p<k is the probability that the packet was
marked before our node k, pk that the packet will be marked at
k, and, p>k that it is marked after k. For small probabilities,
the approximation p ≈ p<k + pk + p>k holds, which can
be turned into an equality if routers only mark previously
unmarked packets (this dependency is natural in the packet-
loss model, where it is impossible for the same packet to be
dropped multiple times). As a result, we obtain

X ≈ N
c · S

R · √p<k + pk + p>k

. (2)

Traditionally, each router independently decides whether
and how much to contribute to the total end-to-end marking
probability, based only on its own needs. We largely keep this
model, but router k measures p<k and estimates p>k before
making its contribution, so that it only applies what needs
to be added. The p>k that will be applied to the packets
cannot be determined a priori, as packets will be marked in the
future. Instead, a simple extrapolation from preceding iteration
is used, namely, we assume that nothing has changed in the
preceding RTT. Even though this seems too simplistic, we have

obtained good results with it, but will keep looking for better
estimators.

From the findings of Section II-A, we obtain the control
rule as

p′ ← p

γ2
,

where p′ is the new marking probability that should be seen in
total, γ is again the bandwidth reduction factor, as determined
from the current link load. Together with Equation (2), this
becomes

p′k ←
p

γ2
− p<k − p>k , (3)

where p′k is the manipulated variable. p, p>k and γ are
obtained in the current time step, but are the result of the
control put into place earlier. p>k will only happen later to
this packet, therefore, we revert to estimating that the situation
has not changed significantly from the preceding time step.
Conveniently, the information about the preceding state is
delayed an RTT by the network and thus can be observed
just in time, as will be discussed further in the next section.

C. Measuring the Variables

Until now, we have assumed that the variables are known.
This section describes how their values can be obtained.

p<k is calculated as the ratio of packets that have the ECN
CE (Congestion Experienced) code point set in the IP header
compared to the total number of ECN-enabled packets.

p is obtained by counting the packets that have the CWR
(Congestion Window Reduced) notification flag in the TCP
header set, again relative to the total ECN-enabled packets.
This indicates the probability of an event having happened,
and does not report individual markings. As PURPLE is able
to keep the loss probability relatively smooth and low, the
number of events closely approximates the number of marks.

For the actual measurement of the ratios, we keep a history
of the last 16 CE and CWR events, respectively, together
with their arrival point in time, as measured in number of
packets. This has the advantage that it allows a quick reaction
to congestion but that the rates will also decay reasonably fast
when no congestion has been seen.

p>k cannot be directly measured, but is obtained by sub-
tracting pk and p<k, both recorded from the preceding RTT,
from the p currently measured, which again reflects events that
occurred in the preceding RTT.

The determination of p>k is where R comes into play,
which so far we have been able to ignore. However, a
reasonably accurate estimate of R is required to determine
the delaying of pk and p<k values between measurement and
application. We use a simple mechanism that has proved to
be remarkably reliable: For some of the packets marked by
router k, it adds an exact-match packet filter that will fire
when a packet for the same flow traverses having CWR set.

Limiting the monitoring to just ECN information eliminates
the need for detailed knowing of the inner working of the
transport protocol, such as sequence number handling and
retransmit behavior. The router only needs to touch packets
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Algorithm 1 packet arrival(pkt)
if ecn enabled(pkt) then

measure ce probability();
measure cwr probability();
if rand() ≤ pk then

set ce(pkt);
start rtt est(pkt);

end if
end if
if Queue full then

drop(pkt);
return;

end if
enqueue(pkt);

Algorithm 2 bg task()
ewma(q);
ewma(L);
remove expired rtt entries(rtt max);
p′k ← p

γ2 − p<k − p>k ;
if ∆t > −− rtt cntr then

γ ← L
O

;
Update p<k from history;
Update p>k from history;
Update RTT estimate R;
p← p

γ2 ;
rtt cntr ← floor( R

∆t
) ;

end if

and inspect flags that it would have had to, anyway. Like any
RTT measurement in an environment in which packets can
get lost and are sometimes retransmitted, this process can also
wrongly causally link two events which are only temporally
related; i.e., measure the time to a CWR, which was not
directly or immediately caused by the CE. To accommodate
for such unavoidable measurement errors, we use a window
of 32 samples, ignoring the top and bottom 10 percentiles.

D. Implementation

The implementation is outlined in Algorithms 1 and 2,
which discuss the per-packet processing and a regularly
executed background task, respectively. The ewma() func-
tions referenced therein relate to updating the exponentially
weighted moving average for the variables mentioned. As was
done for the NS-2 implementation of RED, the background
task could also be integrated into the per-packet function, and
adapting the EWMA time constants accordingly. The use of
an EWMA has the advantage of low-pass filtering the values
measured. Therefore, any short-term change due to traffic
bursts does not result in a significant change of the averaged
value. The floor() function returns the largest integral value
not greater than its argument.

So far we have discussed the macroscopic part of the
algorithm in which probabilities are updated in the order of the

TCP Sink

TCP Source

Purple Queue

Router

R1 R2Purple

100Mbps/2ms

100Mbps

Sink 1

Sink nSource n

Source 1

10−20ms 10−20ms
100Mbps

Fig. 1. Simulation topology for the single-bottleneck case.

estimated RTT. As queue occupancy can significantly change
during one RTT estimate, we introduce a fine-grained mecha-
nism (microscopic part) which adapts drop probabilities more
accurately by taking into account the average queue length.
For this, we leave the basic PURPLE algorithm unchanged
except that we modify the maximum rate that can be allocated
depending on the average queue length. We reduce the rate
that is indicated indirectly by PURPLE to the incoming flows
in order to gain some headroom to drain the queue.

The maximum allocatable rate X ′ seen by PURPLE at k is
given as

X ′ =
L

α(1 + q/Q)
, (4)

where L is the maximum link capacity, q the average queue
occupancy, Q the total queue capacity, and α can be used
to explicitly reduce the average queuing delay, but is usually
set to 1. Its influence will be shown later. The time interval
for microscopic probability updates is typically handled by a
background task (shown in Algorithm 2) in the same frequency
as probabilities are updated in network processors [10] and is
on the order of milliseconds. In a much more coarse-grained
resolution, the set of the PURPLE parameters needed by the
macroscopic part is maintained every estimated mean RTT,
R.

III. EVALUATION

For the evaluation of any Internet protocol or mechanism,
the use of real Internet data is of utmost value. Barring a
full-fledged deployment in the network backbone, the only
practicable alternative is to use Internet traces. Unfortunately,
they are not appropriate for analysis of any application that
significantly affects the traffic, including AQM and PURPLE.
Therefore, we reverted to the use of the network simulator NS-
2 [11] for all simulations and compare the results with RED

and A-RED.
For our simulations, we first configured queues to achieve

high link utilization by setting their capacities in the order of
the bandwidth delay product [2], a widely accepted recom-
mendation. Unfortunately, this leads to high queuing delays,
and is often not practiced owing to the large amount of
buffer space required, which can amount to several hundred
megabytes of high-speed memory for fast links. Nevertheless,
this simulation helps to understand the robustness of the core
part of the PURPLE algorithm. Then we evaluate the full
PURPLE algorithm in scenarios with one or more bottleneck
links.
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Fig. 2. Rate and goodput comparison of simulations with a set of greedy TCP connections and maximum queue length equal to the bandwidth delay product.
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Fig. 3. Comparison of average queue length and local drop rate of different AQM schemes width 100 TCP sources. Note the magnified drop probability
scale for PURPLE.

A. The Single-Bottleneck Case

A first simulation setting is illustrated in Figure 1. Sev-
eral greedy and ECN-enabled TCP sources share a single
bottleneck link between routers R1 and R2. The number of
TCP sources is varied from 10 to 80, and a simulation run
lasts 100 s. To compare the PURPLE algorithm with other
AQM schemes such as RED and A-RED, the queue at the
bottleneck link is configured with a queuing capacity equal to
the bandwidth delay product (660 full-length packets). This
is particularly important, as the main part of the PURPLE

algorithm does not take the average queue length into account.
Therefore, the outgoing link bandwidth seen by the PURPLE

algorithm in this scenario is not adapted by the average
queue length, thus neglecting the micro-managed part of the
algorithm completely. The offered load is smoothened using
an exponentially weighted moving average with weight 1/32.
The background task is called every millisecond. For RED,
the two thresholds thmin and thmax are 10 and 600 packets,
the maximum marking probability is 0.02, and the weight for
updating the average queue length wq is 0.002. A-RED uses

the NS-2 default parameters. As we are not interested in the
behavior of AQM with varying packet sizes, we set the average
packet size of the TCP sources to 1500 Bytes.

Figure 2 shows the allocated link rate at router R1, as
well as the TCP goodput. It can be seen that A-RED is
not able to profit from the full available queue capacity.
Instead, it too aggressively tries to lower queuing delays, at
the cost of a significant waste in allocated link rate and overall
goodput. Although RED shows excellent rate and goodput
results, the queuing delay increases linearly with the number
of TCP sources. PURPLE without microscopic drop probability
updates typically gets much lower queuing delays than RED,
without the A-RED sacrifice in efficiency. In contrast to RED,
PURPLE queuing delay tend to be shorter when the number
of TCP sources increases indicating higher stability of the
algorithm. For PURPLE, as drop probabilities are updated in
the order of the estimated RTT the mean queuing delay has
a higher variance. The strength of the congestion indication,
as manifested in the numbers of marked or dropped packets,
is depicted in Figure 4 as a function of the number of
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TCP sources. It can be clearly seen that PURPLE, because of
its inherent model prediction, significantly reduces expensive
packet drops compared with the other two schemes. This
results in shorter end-to-end delays thanks to the lower number
of packet retransmits.

To reduce unnecessary end-to-end delays, we shortened the
queues in a second simulation. At the same time X ′ is adapted
using Equation (4), with α = 1. The total queuing capacity
is set to 100 packets, and the RED thresholds thmin and thmax

are set to 20 and 60 packets. All other parameters remain
unchanged. Queue lengths and drop probability as a function
of the simulation time are depicted in Figure 3, where 100 TCP
sources are active. As expected, PURPLE is able to maintain
lower average queue occupancy and a smooth packet marking
rate. Figure 5 shows that PURPLE is in general less sensitive
to changes in the number of flows. This shows that PURPLE

routers operate very well even under queues much shorter than
the generally accepted recommendation by Villamizar [2].

If a network operator has strong needs towards providing
either very low delay or very high throughput, the priority
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Fig. 6. Simulation topology for the multi-bottleneck case.
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parameter α can be tuned, without affecting the other good
points of PURPLE, namely smoother traffic and self-tuning.
While PURPLE offers this opportunity, we believe that select-
ing a different value of α will be extremely rare.

B. The Multi-Bottleneck Case

The multi-bottleneck case as depicted in Figure 6 is similar
to the previous simulation environment with the exception
of the added additional bundles of TCP sources and several
nodes that build new congestion points. By varying the link
delays we chose to create a scenario in which different
PURPLE-enabled routers see an estimated RTT that differs
approximately by a factor of two, thus testing the stability of
the algorithm. The TCP bundles 1 (sources 1:1 to 1:n) and 3
(sources 3:1 to 3:n) consist of 50 senders (n = 50), and bundle
2 varies from 10 to 100 sources. Within each bundle, the RTTs
for the TCP sessions are equally distributed in the bounds
shown in Figure 6. All other parameters remain unchanged.

Figure 7 shows the number of retransmission timeouts
(RTO) events for the three TCP bundles. PURPLE significantly
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reduces the number of RTO events for all bundles. Further-
more, we found no evidence of TCP synchronization, and
goodput and mean queuing delay showed congruent results,
found in the single-bottleneck case. Finally, we can state
that there are no significant differences between the relative
bandwidth allocations of the three bundles.

IV. RELATED WORK

Ever since Erlang started developing what became queuing
theory [12], there has been a fundamental tradeoff in single-
server systems between long queues or idle servers and the
resulting low service rates. With the advent of packet networks,
there appeared a possibility to control the arrival rate by
notifying the senders. The mechanism used by TCP [13] is to
take packet loss as an indication. A less drastic measure was
later used in the DECbit feedback mechanism [14], which used
a bit in the DECnet protocol header but required symmetric
routes. ECN [6] recently brought feedback into the Internet
world while avoiding the symmetric-route requirement, which
significantly reduced the requirements for retransmits [15].

DECbit already provided a first early indication of con-
gestion, i.e., before the queue was full. This was adequate
for the small impact (the lack of) congestion had on the
transmission speed in DECnet. But in other environments
with stronger congestion response, better models were needed.
Random Early Drop (RED) [7] started dropping (or, with
ECN, marking) already at low queue utilization, but with low
probability. The result was that only a fraction of TCP senders
would half their transmission window (and indirectly the
transmission rate), smoothing the response signal. It was soon
realized that RED required tuning according to the expected
number of flows and the RTTs seen by these flows, or, in
other words, the aggressiveness of the flow aggregate. Many
mechanisms were proposed to “automagically” adjust for this
[9], [16], [17]. Still, the result is an often bursty queue length
and frequent queue overruns.

Similar approaches were used for ATM ABR [18], where a
system analogous to TCP with ECN was proposed, but with
the capability of signaling several levels of congestion.

Plasser et al. [19] studied nonlinear drop probability func-
tions in RED. They argue that traditional linear RED function
cannot cope with AQM design criteria such as the avoidance of
forced drops and link underutilization. Using the TCP window
model and parameters estimated by means of simulations,
they propose a nonlinear drop probability function for RED.
Especially at low loads, i.e., a low number of TCP sources,
these functions maintain significantly higher queue sizes in
order to prevent underutilization.

In Dynamic-RED [20], the drop probability is adapted in
order to stabilize the queue length close to a user-defined
threshold value. Benefits are bounded delays and independence
from the number of flows traversing a router.

An orthogonal approach is to disproportionately punish the
flows consuming most bandwidth. The first proposal was Flow
RED, or FRED [21], which groups the packets currently in
the queue into flows. Approximative Longest Queue Drop

(ALQD) [22] efficiently identifies some candidates for the
longest (virtual) per-flow queues, thereby reducing the com-
putational complexity. BLUE [23] does not want to rely on
the queue occupation snapshots. Instead, it aims for a longer-
term view and uses therefore packet loss and link under-
utilization events Packets are classified into flows. This is done
efficiently in Stochastic Fair BLUE by using multiple levels of
independent hash functions.

Other rate-based algorithms are GREEN [24] and BAT [5].
GREEN uses an additive-increase and additive-decrease func-
tion of the average offered load to evaluate the drop proba-
bility. The offered load is estimated from the exponentially
smoothened inter-packet delays. BAT is based on per-flow
additive increase and multiplicative decrease to achieve fast
convergence and low queuing delays.

CLCC [25] introduces a second-tier congestion control
mechanism running on top of an AQM scheme such as BAT. As
responsive protocols amplify the congestion signal received,
non-responsive flows will be able to grab more than their
fair share of the bandwidth. This unfairness is counteracted
by a control mechanism regulating the drop preference bias
between the two classes of traffic.

Other applications of TCP modeling include work on TCP-
friendly flow control [26], multicast congestion [27], and
control of misbehaving flows, including possible denial-of-
service attacks [28]. It has also been proposed to modify
bottleneck access routers so that they fairly share their link
bandwidth among the flows originating locally, without the
TCP-typical bias toward short RTTs [29].

V. CONCLUSIONS

PURPLE provides smooth packet marking rates and queuing
delay without any tuning of parameters because of its online
optimized, autonomous behavior that relies on online model-
based predictions It is also able to avoid tail-drop losses almost
completely while providing an excellent balance between
goodput, throughput, and average delay. This is achieved using
minimal effort and state information thanks to the introduction
of three new mechanisms, namely, end-to-end congestion
analysis, monitoring of ECN information, and use of the
TCP model equation. Using simulations, we have shown that
PURPLE behaves very well under a variety of circumstances.
We believe that moving away from a pure-local view to a
wider angle would help improve other AQM methods as well.

The significantly reduced packet loss by using PURPLE

routers results in a large improvement of predictability of TCP
traffic delays. This is significant and could even rehabilitate
TCP for the use in many time-critical implementations which
currently are implemented on top of UDP.

In the future, we will investigate further ways to cleverly
use ECN information. We also plan to perform analyses in
more realistic settings. Unfortunately, the public availability of
packet traces is of no use in AQM evaluation, as such traces
obviously will not adapt according to the AQM signals. We are
planning to participate in larger simulations [30] or real-world
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testbeds. We also plan to evaluate PURPLE in the environment
of the Alpha-Beta traffic mix proposed by Wang et al. [31].
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