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CH-8803 Rüschlikon, Switzerland
{rap,sat}@zurich.ibm.com

Abstract
In recent years, the adoption of NAND flash in enterprise
storage systems has been progressing rapidly. Todays all-
flash storage arrays exhibit excellent I/O throughput, latency,
storage density, and energy efficiency. However, the advance-
ments in NAND technology are driven mostly by the con-
sumer market, which makes NAND flash manufacturers focus
primarily on reducing cost ($/GiB) and increasing the stor-
age density by technology node scaling, by increasing the
number of bits stored per cell, and by stacking cells vertically
(3D-NAND). This comes at the cost of reduced endurance
of the raw NAND flash, larger variations across blocks, and
longer latencies, especially with extremely high error rates
(due to the use of read-retry operations).

In this paper, we present Health Binning, a technique
that facilitates bringing low-cost consumer-level flash to the
quality required for enterprise-level storage systems. Health
Binning determines the wear characteristics of each block
in the background and uses this information in the data-
placement process to map hotter data to healthier blocks
and colder data to less healthy blocks.

Health Binning significantly improves the endurance and
performance of the storage system: It actively narrows the
block wear distribution and moves endurance from being
dictated by the worst blocks towards to a value corresponding
to the average endurance of all blocks, resulting in up to
80 % enhanced endurance compared with other wear-leveling
schemes. At the same time, the probability of reads with high
raw bit error rates (RBER) is reduced, thereby decreasing
the number of read-retry operations throughout the device
lifetime.
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1. Introduction
During the past decade, radical changes in NAND flash
technology were mainly driven by the consumer market.
Scaling down the technology node resulted in increased
storage density and in lower cost per GiB, which in turn
increased the adoption of flash. However, apart from the
desirable increase in storage density and lower cost per GiB,
shrinking the technology node and increasing the number
of bits stored per cell also entail (1) a decrease in the
specified program-erase cycles (PEC) and hence reduced
device lifetime, (2) an increase in access time, especially
if errors are corrected using read-retry commands, and (3)
weaker data retention.

For example, when comparing a 25 nm SLC with a 19 nm
MLC NAND flash, the specified endurance dropped from
100,000 to 3000 PECs, even with 2.5× bits required for
the error-correction code (ECC). The page read latency also
increased by 3.5× to 120 µs. Data retention for enterprise
applications dropped from 12 to 3 months, at 40 ◦C.

These undesirable trends of worsening endurance, reliabil-
ity, and performance are likely to continue, in the medium to
long term. Although the emerging 3D-NAND has temporarily
concealed these issues by reverting to the larger technology
node on the order of 40 nm, the already announced continued
scaling of the technology node and the number of layers will
unquestionably relaunch the earlier trends of the planar (2D)
technology [19].

The specifications of a flash technology define the en-
durance of a block in terms of a number of PECs before
it exceeds an error rate that cannot be corrected by ECC.
Traditionally, the Flash Translation Layer (FTL) attempts to
equalize the PEC across blocks. This makes perfect sense if
we strictly adhere to the specification and expect that each
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Figure 1. RBER of different consumer-level flash blocks as
a function of the P/E cycles. Some blocks have several times
higher endurance than others, but conventional wear-leveling
techniques cannot take advantage of this without risking early
device failure and poor performance.

block will reach exactly its target endurance. However, there
is an unavoidable variability across blocks, and therefore man-
ufacturers conservatively provide the specifications based on
(nearly) the worst blocks expected.

Figure 1 illustrates the measured Raw Bit Error Rates
(RBER) of the worst page obtained from the characterization
of eight blocks from a real consumer-level 16 nm MLC
flash chip as a function of the nominal endurance, which
corresponds to the PEC normalized to the manufacturer-
specified block endurance. This small set of blocks had
been carefully selected from a large number of characterized
blocks to illustrate certain common properties. There is a
huge variability of the maximum endurance between the
blocks. Some blocks can sustain several times more PECs
than the others before reaching the same ECC limit. A similar
variability across blocks can be observed even in enterprise-
level flash, although to a smaller extent, likely because of a
careful selection of silicon dies from the production process.

This result indicates that balancing PECs across blocks
does not necessarily improve device endurance. Instead,
balancing the RBER across blocks would improve endurance,
as it guarantees that the ECC will be able to correct errors for
a longer time. As many modern ECCs achieve an acceptable
unrecoverable bit error rate by correcting up to 1% of errors
(10−2) [25], we assume support for a similarly strong ECC.
However, the techniques presented in this paper are applicable
with any ECC strength.

Non-optimal RBER balancing (e.g., by placing write-
hot data to the worst blocks) will result in uncorrectable
ECC errors and early retirement of some blocks. Early in
device life, these blocks will cause poor performance due
to frequent read-retry and other data-recovery operations.
And after retiring them, the capacity of these blocks will be
reduced from the FTL over-provisioning, putting more stress
on the Garbage Collection (GC) process, thereby increasing
write amplification and ultimately accelerating reaching the

premature end of device life. Already at approx. 50% of the
theoretically achievable endurance, the entire device will have
to be declared unusable because the over-provisioning has
become exhausted.

The ideal approach to achieving good performance and en-
durance from flash with high variability across blocks would
be to wear out the healthiest blocks more and the unhealth-
iest blocks less. In this way, all blocks in the device would
reach their endurance limit at approximately the same time,
resulting in maximum device endurance and performance
until the very end. The open questions in such a technique
are (1) how to identify and track the healthiest blocks, and
(2) how to efficiently wear them out more. In this paper we
provide answers to these two questions.

The contributions of this paper are:
• We introduce the dynamically-tracked RBER of flash

blocks as a metric of their age, wear, and health status.
• We present Health Binning, a technique that uses the

dynamically-tracked RBER to significantly improve the
performance and endurance of NAND-flash storage.

• As a part of Health Binning, we show how the use of
Block Grading, a technique that periodically associates a
health grade to each block, is a remarkably efficient way
to enable wear balancing at computationally low overhead
compared with full sorting of blocks. Block Grading is
therefore suitable to be implemented in computationally-
limited environments such as an SSD.
The remainder of the paper is organized as follows: Sec-

tion 2 gives an overview of the block-management architec-
ture. Health Binning and Block Grading are described in
Section 3, followed by an evaluation in Section 4. Related
work is discussed in Section 5, and conclusions and future
work are described in Section 6.

2. Block Management Architecture
In this section, we describe a generic architecture of a flash-
based storage device. A high-level overview of the block
management is shown in Figure 2. The modifications to
the architecture that lead to an optimal implementation of
Health Binning with Block Grading will be presented later,
in Section 3.

Flash storage devices typically have an FTL that performs
a number of critical flash management operations. First, an
FTL includes a Log Structured Array (LSA) on top of a
physical address space, providing the user with a consistent
view of the storage device and, at the same time allowing the
device to perform maintenance operations without impacting
the user. There are many ways to implement an LSA, but
a common, simple, and best-performing implementation is
through some form of a Logical to Physical Table (LPT).
An LPT has an entry for each user page - typically a 4KiB
Logical Block Address (LBA), which is translated into a
physical location called Physical Block Addresses (PBA),
where the page data will be stored. The LPT is accessed on
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Figure 2. Block-management overview.

every read operation to determine the physical location of the
requested data and is updated on every write operation by the
data-placement unit.

The use of the LSA transforms the write workload into a
sequential write stream of large chunks, preferably striped
over all flash channels (and dies) and with added parity
protection data for recovery purposes. It also allows the
device to have different page sizes for the user and the
physical storage. For example, it is possible to compress
user data as well as store many logical pages in a physical
page. The LSA also enables exposing 4 KiB (or even smaller)
logical pages even though the physical flash pages are 8 KiB
or 16 KiB.

The data-placement unit decides in real time which blocks
should be used for what type of data, such that logical data
pages with similar update frequency are collocated into the
same heat stream. Doing so reduces write amplification as a
large amount of data in the same block is approximately in-
validated at the same time, and effectively allows the average
update frequency of each block to be adjusted according to
its wear, thereby enhancing the endurance and performance
of the device. Similarly as in [11], the data-placement unit
also updates the heat of an LBA on each write request, such
that host writes increase an LBA’s heat and relocation writes
decrease it.

Today, there are typically 256 or 512 physical pages
organized in a flash block. Before writing data, the target
location must be erased, an operation that can only be
performed at block granularity. Therefore, the data-placement
unit draws freshly erased blocks from one of the Free Block
Queues (FBQ) into the destage buffers, and separate destage
buffers are maintained for each data stream. After all pages
in a block have been written, the block is moved from the
destage buffer into the occupied block pool.

In an LSA, when a user overwrites or trims (deletes or
unmaps) data of a logical page, the old data copy is not
immediately erased, but only marked as invalid. At some
point, nearly all blocks in the device are written with data, and
to allow further writes, the GC process chooses a block with a
high percentage of invalidated data. The GC issues relocation
writes for all still valid data pages, which are then written
to some other location by the data-placement unit. The LPT
is updated accordingly, and after relocation has completed,
the block is erased and placed back into a FBQ (or retired if
its worst page exceeds the error-correction capability of the
ECC).

Upon initialization, all blocks are erased and placed into
the FBQs. A conventional FBQ would be a simple FIFO
or LIFO queue. In contrast, in Health Binning with Block
Grading, we maintain separate queues for blocks with similar
health (i.e., the blocks have the same health grade). At any
point in time, the FBQs should have enough blocks to absorb
potential bursts of user writes, and GC is triggered when the
queue size falls below a critical limit. Once the physical space
has almost been filled up for the first time, the number of
blocks in the FBQs must not be too large because these blocks
do not hold valid data and therefore artificially reduce over-
provisioning and increase write amplification [10]. However,
the FBQs are necessary if a device is to provide stable and
reliable performance.

3. Health Binning with Block Grading
NAND-flash storage devices typically implement static and
dynamic Wear Leveling (WL). Dynamic WL targets improved
endurance by balancing the PECs across blocks. Upon over-
writes and relocations, data is placed into free blocks with the
least PEC. Although dynamic WL narrows the distribution
of PECs across blocks, there still is a huge gap to the actual
available endurance, as the same PEC of two blocks does
not necessarily indicate that they have the same remaining
endurance.

Static WL identifies the least worn blocks holding static
data, and relocates still valid data from them. After this,
these least worn (healthiest) blocks are available for writing
data to them. These least used blocks have a significantly
higher remaining endurance than the average, but because
of the low number of invalidated pages (there might even
be no invalidated page) they have not been identified and
selected by GC. Static WL has been found to increase
endurance on top of dynamic WL [3, 16]. Static WL is
also used to efficiently address data-retention limitations
(i.e., the time that data will be reliably readable under the
given environmental conditions), a property becoming more
and more important because of the restrictive specifications
of newer flash generations. It is highly desirable to limit
the static-WL activities, (1) to ensure that static data is
not moved frequently, and (2) to confine additional write
amplification if the selected blocks hold only (or nearly only)



0.5x 1.0x 1.5x 2.0x
Total Device Writes [Nominal Endurance]

0.5x

1.0x

1.5x

2.0x

P/
E 

C
ou

nt
 M

ea
su

re
d

0

0.0002

0.0004

0.0006

0.0008

0.001

Bl
oc

k 
C

ou
nt

 (N
or

m
al

iz
ed

)

(a) P/E cycle distribution

0.5x 1.0x 1.5x 2.0x
Total Device Writes [Nominal Endurance]

10−4

10−3.5

10−3

10−2.5

10−2

R
BE

R

0

0.002

0.004

0.006

0.008

0.01

Bl
oc

k 
C

ou
nt

 (N
or

m
al

iz
ed

)

(b) Block wear distribution.

Figure 3. Conventional wear leveling under a highly-skewed workload (Zipfian 95/20) equalizes the P/E cycle counts (left),
but the number of read errors varies significantly across blocks (right). This limits overall endurance and results in increased
latencies due to read retries.

valid data [7, 9, 23]. If performed too aggressively, static WL
may significantly increase write amplification, reducing the
number of writes available to the user (i.e., reduced logical
device endurance).

In Figure 3(a), we show a heat map of the PEC across
blocks during the lifetime of a device when a conventional
WL algorithm that attempts to balance the PEC across all
blocks is used. The evaluation was performed by means of
simulations using a device populated with 19 nm c-MLC flash
chips, and a highly-skewed write workload following a Zip-
fian distribution where 95 % of the writes are concentrated
in 20 % of the device address space. Despite the high skew,
the PEC distribution stayed extremely narrow with increasing
device writes. The horizontal lines that start to appear after
1.1× device writes and depart from the average curve repre-
sent blocks that had to be retired because they had reached
the error correction capability of the ECC. The slope of the
curve slightly increases towards the end of life as more and
more blocks are being retired. This increase further acceler-
ates wear out. However, as illustrated in Figure 3(b), towards
device wear-out, there are many blocks that still have signifi-
cantly better health (lower wear) than others. Once a certain
number of blocks has been retired, the device can no longer
accept writes, even though many blocks are still healthy. As-
suming that a device can only tolerate a few percent of all
blocks being retired, device endurance is effectively reduced
to less than 60 % of the maximum achievable endurance when
all cells would have been used to their outermost limits.

As we have seen earlier in Figures 1 and 3, blocks typically
reach their ECC limits at different PECs, thus balancing the
PEC across blocks will lead only to limited improvements
in terms of endurance. PEC balancing can only yield good
endurance when blocks have very similar characteristics,
which is not the case for modern NAND flash.

Health Binning targets improving the endurance beyond
the capabilities of traditional WL. To do so, Health Binning
(1) uses the RBER as a metric for block health, (2) tracks the

block health of all blocks periodically and assigns a health
grade to each block, and (3) improves endurance using careful
data placement rather than by increasing the number of writes
in the device that conventional WL techniques do.

In Health Binning, the hottest data is immediately placed
on the healthiest blocks from the FBQ, and cold data is placed
on less healthy blocks. As Health Binning is purely a data-
placement algorithm, it does not cause data relocation and
does not increase write amplification. Therefore, when the
workload exhibits skew, Health Binning can only improve
endurance.

As there is no change in write amplification, the effects
of Health Binning can be measured in either the physical or
the logical domain (equivalently). In this paper, we opted
for quantifying improvements in physical endurance as it
excludes any variations due to GC as well as the size of
over-provisioning. Furthermore, in our studies, we analyzed
various GC algorithms and configurations, and confirmed that
reasonable changes in the GC have only a marginal effect on
the relative physical endurance when comparing WL schemes
and Health Binning. Therefore, all our results use the same
GC and over-provisioning configurations. Below we will
present our approach for estimating the block health.

3.1 Estimating the Block Health
As some research groups have recently suggested, it is reason-
able to consider the RBER when estimating the block health,
rather than the PEC [14, 17, 21], because the acceptable un-
recoverable bit-error rate of an ECC algorithms, typically in
the range of 10−13 to 10−16, is bounded by the RBER (rather
than by the block’s PEC). In this section we describe the most
important challenges associated with health estimation based
on RBER, and our approach to solving them.

In Figure 1 we have seen that some blocks (e.g., Block 5)
look unhealthy in the beginning (have a higher RBER than
others), but become healthier than others (e.g., Block 1) to-
wards the end of life. Therefore, the RBER in early life cannot



be used as an estimator of the overall block endurance. In the
Health Binning scheme, we have implemented continuous
background scrubbing and monitoring of block health, called
Background Health Checker (BGHC), as shown in Figure 2.

As BGHC scrubs through the pages of a block, it de-
termines the RBER of each page in the block. In our real
hardware environment we utilize information from the ECC
decoder of the flash controller to determine the RBER. Based
on the RBER of the worst page in the block, the block is
graded (classified) relative to other blocks. Doing so signif-
icantly reduces the amount of meta-data that needs to be
tracked in the device, as we only have to track a single value
for the entire block.

It is important to note that only by measuring the RBER
of the worst page for each block individually, outliers in
the RBER distributions are taken into account to achieve an
acceptable unrecoverable bit-error rate. This is in contrast
to recent observations of uncorrectable errors not being
correlated with the single RBER reported by SSDs [22].

Overall, blocks should be distributed approximately
equally across the different health grades. For example, as-
suming four health grades, the best 25% of blocks would
be in the healthiest grade, the next 25% in a less healthy
grade, etc. From our evaluations, a non-balanced distribution
into health grades has only minor impact on the results. The
number of health grades should be proportional to the num-
ber of heat levels being tracked. We also found that having
more health grades than heat levels improves endurance only
marginally.

3.2 Efficient Block Wear-out
Health grades are used only during data placement (i.e., not in
the WL or the GC process). Upon erasing, blocks are placed
into the grade’s FBQ, so that future data placement can take
place in a more efficient way. When data from a particular
heat stream needs to be written to a new block, a block is
taken from the most appropriate FBQ. As the heat-to-health
mapping places the write-hottest data to the healthiest block
and less write-hot data to less healthy blocks, the healthiest
blocks will naturally see more P/E cycles than the less healthy
blocks – simply because the write-hottest data is the most
likely to be overwritten by the user.

With Health Binning alone, blocks holding a large amount
of, or only static data will not be moved, and static WL is still
required. However, we use static WL for the sole purpose
of ensuring that blocks do not hold data for longer than the
retention time manufacturers recommend, typically a few
months. As a consequence, in the worst case, a block will
only see at most a few PECs per year due to static WL.
This is negligible compared with the wear induced by host
workloads.

Next, we show how Health Binning with Block Grading,
in the most natural way, achieves an increased wear-out of the
healthiest blocks and a reduced wear-out of the less-healthy
blocks, and quantify the endurance gains.

4. Evaluation
Here, we first describe the evaluation environment, and
then present results comparing Health Binning with other
approaches.

4.1 Description of the evaluation environment
Our evaluations are based on a simulator and a real hardware
environment using an FPGA-based flash controller. The
hardware environment can, in addition, be operated with
real flash chips attached or with emulated flash chips. Both
the simulator and the emulated hardware use a flash model
described later.

Clearly, improving endurance directly with real flash chips
(and boards) takes too much time and budget, so this was not
an option. For example, decent SSDs reach 100 k writes per
second of 4 KiB data blocks to flash. Assuming an endurance
of 3000 PECs, a single test of a device with 1 TB capacity
would take approximately 3 months to wear out all blocks.
Further, our target boards (on which we can measure the
RBER) have significantly higher endurance than conventional
consumer SSDs. Therefore, in the scope of this paper we
are only able to present results from the simulation and the
emulation environments.

However, we have confirmed an extremely similar be-
havior of the real and the emulated hardware, and also the
simulator (all written by different people). This allowed us
to perform back-to-back testing across the implementations,
thereby reducing the possibility of incorrect conclusions orig-
inating from implementation errors. This approach gives us
high confidence in our approach and all our implementations.

All results presented in this paper, unless otherwise noted,
are based on large scale characterization data from real flash
chips, namely 19 nm and 16 nm MLC flash technologies
from various manufacturers. For each technology we utilized
characterization data from a large number of blocks to build
a Gaussian mixture model which allowed us generating block
parameters for a much larger amount of blocks [20]. Doing
so, we were able to model the RBER of thousands of flash
blocks in our simulations. In fact, we evaluated different
configurations ranging from 10s to 100s of thousands of
flash blocks generated and did not observe significantly
different behavior for the various configurations. In other
words, Health Binning could be beneficial to most, if not
all, NAND-flash controller designs. As in our simulators
the properties of the flash blocks are modeled, no real data is
actually being written, but all the flash-management functions
outlined in Figure 2 are implemented.

Once a few percent of the blocks have been retired as
they had reached the error correction capability of the ECC,
write amplification jumps abruptly, and the performance of
the device drops suddenly. We therefore decided to perform
our evaluations only up to the moment when 2 % of the
total number of flash blocks get retired. As flash controllers
typically use RAID-like parity schemes, this limit leaves just
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Figure 4. CDF of block wear at the end of life for different write workloads on a 19nm cMLC device. The horizontal dotted
line at 98 % block wear marks the block retirement limit.

enough over-provisioning to handle the failure of an entire
flash chip.

We used both uniform and skewed workloads in the
evaluation. Uniform-random write workloads are typically
the worst workload for flash-based storage devices because
blocks that are garbage-collected will on average, see the
lowest number of invalidated pages. In contrast, it is a known
fact that real-life workloads are not purely uniform and that
some LBAs are more likely to be accessed than others [8, 13].
Workloads following a Zipfian or Pareto distribution [1]
follow this principle and are therefore a much more realistic
class of workloads with the advantage of having an exact
mathematical definition compared with real-world traces. We
also evaluated sequential writes workloads, but do not show
the results here, because for those workloads the maximum
benefit is obtained even with a simple 1-grade Health Binning
scheme and by always taking the healthiest of the free blocks.

4.2 Impact of Workload Skew on Endurance
Figure 4 compares the Cumulative Distribution Function
(CDF) of the measured RBER at end of the simulation
runs for a set of different workloads and a 19 nm cMLC
NAND flash model using no WL, traditional WL based on
PEC and RBER balancing, and Health Binning. Because the
type of workloads used here accesses every LBA sooner or
later, static WL rarely gets an opportunity to relocate data.
Therefore, only dynamic WL is actively used.

For a uniform random workload, the best strategy is to
always pick the free block with the lowest RBER for placing
new writes as is done by the RBER-based WL algorithm,

which results in roughly 10 % additional endurance compared
with the other schemes. In Figure 4(a) the endurance gain
corresponds to the area between RBER-based WL curve
and the curves of other WL schemes. Health Binning is not
able to narrow the RBER distribution because the update
frequencies of all LBAs have the same average, therefore
segregating writes is ineffective: In fact, the segregation of
writes results in less good blocks being selected for placing
data which supposedly seems to be colder (i.e., because it had
been relocated by GC) but in reality has the same expected
update frequency than other writes due to the workload
characteristics. This inaccurate placement decision ultimately

Algorithm Endurance gain over no WL

Technology Random Zipfian

60/20 70/20 80/20 95/20 98/20

WL PEC:
A: 19nm cMLC 0.24 %−0.05 % 0.07 % 0.00 % 0.10 % 0.48 %
B: 19nm eMLC 0.01 % 0.16 % 0.22 % 0.35 % 0.86 % 1.21 %
C: 16nm cMLC 0.05 %−0.76 %−0.76 %−0.79 %−0.55 %−0.54 %

WL RBER:
A: 19nm cMLC 9.91 % 9.22 % 10.61 % 13.22 % 26.19 % 45.42 %
B: 19nm eMLC 1.38 % 2.38 % 2.52 % 4.90 % 27.36 % 44.65 %
C: 16nm cMLC 11.08 % 18.14 % 19.76 % 23.12 % 47.95 % 70.87 %

Health Binning:
A: 19nm cMLC −0.53 % 33.18 % 37.67 % 42.68 % 56.44 % 58.79 %
B: 19nm eMLC −0.12 % 19.17 % 23.91 % 21.03 % 50.94 % 51.70 %
C: 16nm cMLC −0.39 % 46.34 % 53.46 % 60.33 % 78.55 % 78.80 %

Table 1. Endurance improvement over no WL, for uniform
random and skewed write workloads.
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(b) Wear distribution.

Figure 5. P/E cycle and wear distributions using Health Binning under a Zipfian 95/20 workload.

results in slightly lower endurance compared to no WL.
Although having the lowest endurance, uniform random-write
workloads over the entire address space of the device are
however not likely to be encountered in real-world usage
over prolonged periods of time.

As soon as the workload exhibits skew, segregating based
on the update frequency quickly pays off: Already with a
lightly skewed Zipfian 60/20 workload, where 60 % of the
writes target 20 % of the address space, Health Binning sig-
nificantly outperforms other WL schemes, reaching 33.18 %
additional endurance. With increasing skew, heat segregation
separates hot from cold data better, further facilitating the
operation of Health Binning. Beside Health Binning, RBER-
based WL also achieves some endurance gains with increas-
ing skew because write-hot data becomes more common than
colder data, and thus an increased wear-out of the best blocks
(by placing more and more hot data to them) becomes more
likely. The absolute endurance gains are, however, signifi-
cantly lower than with Health Binning.

In contrast, there is no visible difference between no WL
and PEC-based WL. Figure 3(a), shows that, despite the high
skew, the PEC distribution is very narrow for PEC-based WL,
as would be expected from such a scheme. This means that
the scheme operates properly, but nevertheless sub-optimally
for the real flash chips. This conforms with observations made
by other research groups [3, 16].

For the extremely-skewed Zipfian 98/20 workload, the
RBER distribution is also extremely narrow. This means
that Health Binning was able to utilize the healthiest blocks
much more than the least healthy blocks, and in the end all
blocks reached their ECC correction capability almost at the
same time. Therefore, the device exhibited extremely stable
performance and the highest endurance. Moreover, the point
in time at which the device will have to be replaced owing to
wear-out becomes also more predictable.

An overview of different flash devices and their measured
endurance gains is given in Table 1. We used large-scale flash
characterization data from three different flash technologies

to model the block behavior in the evaluation. The table
illustrates that Health Binning outperforms all other wear-
leveling schemes for any skewed workload, but also that
the endurance gains can vary significantly between different
technologies. The results further indicate that, because of the
increasing variability in the block characteristics of smaller
technology nodes, also the endurance improvements from
Health Binning and RBER-based WL generally increase.
Overall, the qualitative statements and observations made
above with respect to the results in Figure 4 are also valid for
the other flash technologies presented in the table.

4.3 Analysis of Health Binning
Let us now focus on the heavily-skewed Zipfian 95/20 write
workload using Health Binning. Figure 5 shows the PEC and
the RBER distributions for the entire evaluation instead of
only reporting them at the end of life. We use the same device
as introduced in Section 3, which is populated with 19 nm
c-MLC flash chips.

Clearly, Health Binning narrows the RBER distribution
effectively already very early in the device lifetime and
keeps it narrow (Figure 5(b)). The distribution widens only
marginally towards the end of the evaluation, demonstrating
the effectiveness of Health Binning, which results in the
high endurance gains over other WL schemes presented
above. At the same time, the PEC distribution (shown in
Figure 5(a)) widens soon after the start, owing to the different
wear properties of individual blocks. This is in contrast to the
PEC-based WL results presented in Figure 3. With Health
Binning, the best blocks endure roughly 2.5× more PECs
than the worst ones at the end of life.

We then deliberately reduced the number of distinct block
parameters to only 100 different types of blocks without
reducing the total number of blocks, as we wanted to study
the ability of Health Binning to balance changes in block
wear characteristics rapidly. This is important because blocks
in real flash devices may behave significantly differently at
distinct points of their lifetime as we showed in Figure 1
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Figure 6. P/E cycle distribution using Health Binning with
100 different block parameters and a Zipfian 95/20 workload.

where some blocks appear to age quickly at the beginning, but
last significantly longer than other blocks that were initially
very healthy but later on quickly saw accelerated wear-out
compared to the average block behavior. All other parameters
are kept unchanged.

The evaluation results are presented in Figure 6. Here,
the PEC evolution of individual block types can be clearly
identified by the different curves: Blocks that exhibit a
decrease in the slope with increasing number of total device
writes correspond to blocks that initially manifested a lower
RBER than the average block, but later on turned out to be
less good blocks. In contrast, blocks with a slowly ascending
slope at the beginning, but a steadily increasing slope with
increasing number of total device writes, can be identified
as initially underestimated blocks with high endurance. The
change in the slope of the curves demonstrates the virtue of
quickly adapting to intrinsic block properties.

4.4 Health Binning Segregation Granularity
The endurance gain obtained from Health Binning also
depends on the granularity at which the data-placement unit
segregates write operations based on their update frequency.
This granularity corresponds to the number of streams that are
maintained. In our simulations we maintain separate streams
for relocation and host write requests to capture the workload-
dependent differences in the temporal locality of these types
of write requests better.

An overview of the endurance gains measured is illustrated
in Figure 7 for different number of streams ranging from 2
to 8 streams. The presented results are based on the 19 nm
cMLC flash devices. The benefit from more streams is highest
with low to moderately skewed workloads (Zipfian 70/20 and
Zipfian 80/20). For highly skewed workloads (i.e., Zipfian
95/20), Health Binning already achieves more than 95 %
of the possible endurance, hence the additional benefits of
having more streams is less pronounced.

Intuitively, one can say that, overall, endurance should
increase with more streams. However, as the use of more
streams also increases the number of flash blocks being

0%

10%

20%

30%

40%

50%

60%

60/20 70/20 80/20 95/20

E
n

d
u

ra
n

c
e

 G
a

in

Zipfian Workload Skew

2 Streams 4 Streams 8 Streams

Figure 7. Endurance gain as a function of the number of
streams for different workload skews.

assigned for data placement at any point in time, the over-
provisioning is artificially reduced by those blocks, which
consequently leads to increased write amplification and less
logical endurance on the higher level. Also, more streams
typically require more DRAM for destaging buffers which
may not be available in flash controllers.

5. Related Work
The physical reasons behind the RBER, such as program
disturb, quantum-level noise effects, erratic tunneling, data
retention, read disturb, etc., have been analyzed by Mielke
et al. [14]. The threshold voltage distribution has a strong
effect on the observed RBER, and as such has been stud-
ied extensively [4, 5], primarily as a way to predict future
flash behavior and to design more effective error-tolerance
mechanisms. Papandreou et al. [18] go further and propose
dynamic adjustment of the read voltage thresholds, to min-
imize the RBER dynamically. Although we do not discuss
these advanced techniques for improving endurance in the
paper, we have verified in simulations that our result do not
change when such techniques are used. Recently, Schroeder
et al. [22] performed a large scale analysis on reliability of
SSDs in the field and found that the RBER and uncorrectable
errors reported by the SSDs are not correlated. Although it
is unknown how the drives internally determine the RBER
this could be a product of PEC-based WL and outliers in the
RBER distribution.

Based on a competitive analysis, Ben-Aroya et al. [2] con-
clude that GC and block erasure policies are best separated
from WL, and that heuristics for predicting future request se-
quences might be able to improve endurance, if the algorithm
considers all three policies.

A simple way to address limited endurance is to increase
over-provisioning or add a large write cache [24]. Increasing
the actual physical flash capacity without making this addi-
tional space available to the user can greatly reduce write
amplification, but significantly increases the cost per GiB of
the device [10].



Chang et al. [7] introduce a static WL mechanism which
balances the PECs across blocks. Their main objective is to
force the relocation of cold data after a given period of time
has passed. They observe the problem that placing hot and
cold data together results in more relocations, and assume
(but do not describe) the existence of dynamic WL in the
FTL. They also do not describe how heat is determined and
whether heat segregation is performed.

Different studies exist that leverage segregation of data
according to its update frequency upon data placement. Hu et
al. [11] propose a scheme called Container Marking which
combines data placement and segregation with PEC-based
WL to reduce write amplification. Min et al. [15] introduce a
flash-aware file system organized in a log-structured fashion
that separates data into four streams.

Several approaches can be found in the literature that try to
leverage the RBER to improve flash reliability. But all of them
lead to increased write amplification. Cai et al. [6] propose a
data refresh algorithm for retention errors due to charge loss
in flash cells. The algorithm periodically reads entire flash
blocks to determine their RBER, and, if needed, corrects
and reprograms them (in-place). Pan et al. [17] describe how
under the same program-erase cycling, blocks can have very
different RBER. They evaluate uniformly random workloads
and propose a modified GC scheme that selects blocks based
primarily on the RBER. They show that such a scheme can
noticeably improve the efficiency of WL, but at the cost
of increased write amplification. Later, Peleato et al. [21]
went one step further and proposed an RBER-based WL
scheme. Besides measuring the RBER, they also use the
page program time and the PEC to build a linear model to
predict the error rate of blocks. The WL algorithm consists of
maintaining a list of the coldest blocks in the occupied block
pool and exchanging the healthiest of the coldest blocks with
the most worn blocks in the free block pool. Clearly, this
implies additional writes that increase write amplification.
Nevertheless, using this approach, they report improvements
over PEC-based WL. In contrast to these approaches, Health
Binning does not change write amplification, because it
changes only the assignment of already erased blocks to
data streams.

6. Conclusions
Endurance and performance are of critical importance, and
sustaining those with next-generation flash is imperative. We
have observed significant differences in the endurance of flash
blocks of the same device types with recent flash technologies.
Unfortunately, as we showed, traditional WL approaches
cannot mitigate these deficiencies.

In this paper, we presented a new flash management
technique called Health Binning that uses the RBER of blocks
as a metric of their health (wear) to make informed decisions
with respect to data placement and wear leveling, instead of
relying on just the PEC of blocks. As the technique neither

interferes with GC nor causes any additional writes, it does
not affect write amplification – a property we have not seen
elsewhere in the previous research on the health management
for NAND flash. Based on our results, we expect that in
real-world workloads, which typically exhibit high skew in
I/O access patterns, Health Binning can increase endurance
by up to 80 %, depending on the flash technology used.
Health Binning therefore helps closely achieve the average
endurance of all blocks. A non-negligible side effect is that
the reduction achieved in block-health variance additionally
reduces the number of read retries and RAID reconstructions
(inside an SSD or on the higher level) as the device ages.
However, this has not been quantified in this paper because it
heavily depends on the utilized error-correction techniques
and hence is out of the scope of WL techniques.

Device endurance characterization is a time-consuming
process even when done by means of simulations. Therefore
we did not include results from any 3D-NAND flash chips
for which characterization data is currently emerging. Based
on the recent research on 3D-NAND flash [12], we are very
confident that our methods can seamlessly operate also with
such devices. We believe that Health Binning will become an
indispensable part of flash management regarding the latest
technology trends in NAND flash, and may be applicable
to other emerging non-volatile memory technologies in the
future. Last but not least, the results presented in this paper
are in line with a real implementation of Health Binning we
integrated into one of our commercially available product
line.
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