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Abstract

Fast non-volatile memories are exposing inefficiencies
in traditional I/O stacks. Though there have been frag-
mented efforts to deal with the issues, there is a pressing
need for a high-performance storage stack. Interestingly,
20 years ago, networks were faced with similar chal-
lenges, which led to the development of concepts and
implementations of multiple high-performance network
stacks. In this paper we draw parallels to illustrate syn-
ergies between high-performance storage requirements
and concepts from the networking space. We identify
common high-performance I/O properties and recent ef-
forts in storage to achieve those properties. Instead of
reinventing the performance wheel, we advocate a case
for using mature high-performance networking abstrac-
tions and frameworks to meet the storage demands, and
discuss opportunities and challenges that arise with this
unification.

1 Introduction

Recent advancements in non-volatile memories (NVMs)
promise to offer significant performance and endurance
improvements over the current generation [2, 11]. How-
ever, despite having significant bandwidth and latency
improvements in storage devices, the performance of
end applications has only been improving at a marginal
rate. One of the key reasons behind this inefficiency
is retrofitting old storage interfaces and abstractions
on top of modern NVM devices. This approach re-
sults in a centralized, CPU-centric I/O stack, where the
CPU orchestrates data movements within the host. In
a high-performance environment, the constant CPU in-
volvement in data flow incurs high performance penal-
ties [5, 7]. Stagnant single CPU speed improvements,
multilayer device accesses in virtualized environments,
absence of high-performance storage stacks, and ineffi-
cient APIs only exacerbate the situation.

To improve the situation, storage researchers have al-
ready started to look into light-weight, low-latency, asyn-
chronous, and directly-accessible storage stacks [5, 6, 7].
Interestingly, looking back 20 years, similar challenges
were faced by the networking community when tradi-
tional stacks were unable to meet strict application per-
formance demands. The vast body of research into that
resulted in defining concepts, interfaces, and concrete
implementations of multiple high-performance network-
ing stacks [3, 4, 10, 21].

Recent rejuvenated interest in efficient I/O stacks gives
us opportunities to evaluate high-performance network
abstractions and interfaces for storage. We present a case
for a unified I/O stack, using high-performance network-
ing framework. We discuss in detail the key character-
istic properties, opportunities, required support and the
open issues when applying networking concepts in the
storage domain.

2 The Storage Performance Landscape

Slow storage has been the Achilles’ heel for data pro-
cessing systems. Historically disk bandwidth and ac-
cess latency have consistently lagged behind its capacity
and packing improvements [11]. However, Non-Volatile
Memory offers unprecedented improvements over disks
with multi-Gigabit bandwidth and access latencies in mi-
croseconds. This performance paradigm shift has been
the most fundamental and significant change in storage
since the advent of magnetic disks in the 70s. Unsur-
prisingly, not much has changed in the way operating
systems manage storage devices. The following factors
motivate a need for reevaluation of the complete storage
stack in order to support high data rates:

Rising CPU Gap: Hardware landscape has changed
considerably during the last decade. Modern I/O devices
are getting significantly faster than CPUs. With stalled
single CPU speed scaling, CPUs can no longer keep up
with the high data rates from devices (see Table 1). As a



CPU Speed Net BW Storage BW
1980-2010 1000× 3000× 50×
2010-now 1-1.5× 4-10× 10-100×

Table 1: The widening CPU performance gap between a
CPU speed and bandwidth improvements of I/O devices.

result, traditional CPU-centric storage stacks, where the
CPU orchestrates data movement from relatively slow
disks to DRAM buffers, have started to show perfor-
mance strains in high IO operation/sec (IOPS) environ-
ments. This CPU-bottleneck limits deliverable perfor-
mance to applications, despite having orders of magni-
tude performance improvements in hardware. As NVM
technologies continue to mature, this performance gap
between CPU and devices will widen. Manycore CPUs
come to the rescue, however, the overhead due to lock-
ing, synchronization, and coherency etc., limits the over-
all achievable I/O performance. Also, to use multiple
cores to satisfy high-CPU demands of I/O operations, is
performance inefficient. As computing gradually moves
toward Exascale, the performance efficiency [1] has di-
rect implications for the amount of resources (CPU, stor-
age, network), energy, and cost.

Software and Access Overhead: NVMs packed as
fast disks, have been the least intrusive and most eco-
nomical way of integration so far. As the performance
characteristics of underlying storage media have changed
significantly, the traditional disk-based optimizations are
now considered expensive, obsolete, and intrusive. For
example, I/O prefetching, buffer caching, request re-
ordering and merging etc., all require additional time and
CPU cycles (which are limited) and hence, may even
lead to performance degradation with NVMs. Layer-
ing and multiplexing within operating systems, and vir-
tualized environments put further penalties on the perfor-
mance. With additional layers, the incurred overhead is
non-linear which results in a rapid performance loss.

Restrictive APIs: Storage APIs are not designed to
expose NVM capabilities to applications. Features such
as accessing flash chips directly [14], parallel read/write
ports [6], atomic updates [19] etc. can significantly
simplify storage logic while improving deliverable I/O
performance [16]. Furthermore, they also restrict pass-
ing useful information about the nature of I/O across
the layers to NVM devices. Useful access information
like scratch-pad access (light-weight, single copy, no
protection), log-access (write-append, random reads), or
range invalidation can help significantly with better de-
vice management, and consequently performance.
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Figure 1: Evolution of high-performance network prop-
erties. The arrow does not represent any casual depen-
dency or temporal precedence in the development.

3 A View from Networks

This appetite for efficient high-bandwidth and low-
latency access to data is not unique to the storage. The
networking community has always lived with stringent
application demands for high IOPS. Over the last 20
years various techniques and concrete implementations
of networking stacks have developed to match the peri-
odic interconnect bandwidth and latency improvements.

Simple optimizations such as checksum and segmen-
tation offloads gradually delegated a part of the packet
generation to network controllers. Adaptive interrupt co-
alescing and device polling resulted in better device man-
agement under load. These simple techniques freed pre-
cious CPU cycles and helped to close the interim CPU-
network gap that arose from continuous interconnect im-
provements e.g. Megabit to Gigabit Ethernet.

Though effective and helpful for high-bandwidth data
transfers, these optimizations yielded little improve-
ments in end-to-end application latencies. Latency re-
quirements of high-performance applications necessi-
tated more radical approaches. To reduce every poten-
tial overhead, these approaches favored a fresh redesign
of the complete networking stack and developed novel
host interfaces, interconnects, networking principles and
operating system mechanisms [3, 4, 10, 21].

As these high-performance stacks became popular,
network architects soon identified a common require-
ment for rich network I/O semantics from many appli-
cations. These semantics and network operations made
development of complex applications easier. Naturally,
to reflect the gradual progress made in operating systems
and networking hardware, networking API and interfaces
also evolved.

The holistic approach helped in developing many key
ideas that are now an integral part of any modern high-
performance interconnect such as Infiniband and iWARP.
Given the recent rejuvenated interest in high perfor-
mance I/O, this is a timely investigation into key prin-
ciples, and properties that enabled efficient I/O for net-
works. Though these properties are inspired from ex-
periences in networks, we argue that these are equally
applicable to the storage domain as well. We discuss
how recent efforts to integrate NVM are already explor-
ing subsets of these properties (see Table 2):
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Networks Moneta-D Gordon NVHeap FusionIO
Efficient Hardware Access yes yes yes yes yes
Operating System Bypass yes yes N/A N/A proprietary
Zero Copy Data Movement yes no N/A possibly no
Asynchronous I/O Model yes yes yes N/A yes
Synchronous Completion yes no no N/A no
Rich I/O and API yes no no transactions proprietary

Table 2: Comparison of recent storage efforts to achieve high-performance properties. N/A denotes that the property
is not the primary focus of the work.

Efficient Host Interface and Hardware Access:
High-performance networks manage to keep host over-
head minimal by directly mapping the hardware re-
sources to applications as private channels or queues. As
the overhead from disk based storage protocols (SCSI
etc.) and host interfaces (AHCI etc.) become unbear-
able [9], research projects such as Moneta [5] and mul-
tiple commercial offerings [14] have started to look into
directly accessible hardware with improved host inter-
faces. Moneta-D offers safe user-space access to directly
accessible NVM devices [7]. Though it helps in reduc-
ing the overhead associated with issuing I/O requests and
notification delivery, these efforts lack the generality of
user-space networking.

Operating System Bypass: By separating data from
the control path and pre-allocating I/O resources, high-
performance networks involve operating systems in se-
lective managerial tasks such as resource accounting.
Enforcement of the security policies takes place in net-
work hardware. Recent storage research has looked into
similar techniques to avoid unnecessary operating sys-
tem involvement with request scheduling, batching, re-
ordering, dynamic resource allocation, and security en-
forcement. Moneta-D pre-allocates DMA buffers, di-
rectly posts requests, and offloads file permission checks
to a capable storage hardware [7]. Though the operating
system is still involved in DMA buffer management, file
check offloading and permission evictions etc., it is kept
out of the I/O loop between the application and hardware.

Zero Copy Data Movement: High-performance net-
work controllers maintain sufficient contextual meta-data
to multiplex, and securely DMA data directly into appli-
cation buffers. They also support arbitrary application
buffer layouts, offset calculations, and scatter-gather I/O.
Together with directly accessible I/O hardware and oper-
ating system bypassing, the CPU is now completely de-
coupled from the fast data flow. Efforts have been made
to achieve zero-copy storage, but they are either limited
(small number of user accessible DMA buffers) or re-
stricted (aligned layout of user buffers). Zero copy stor-
age is possible with mmap’ed files as application buffers,
but not achievable using other memory allocation meth-

ods such as malloc.

Asynchronous I/O Posting: High-performance stor-
age interfaces such as epoll, are based upon the readiness
instead of the asynchronous-notification model. This
does not provide sufficient concurrency to exploit full
device potential, and makes optimizations such as re-
quest batching and selective notifications, very difficult.
In multi-stage environments, where data passes through
multiple storage devices, asynchronous I/O also gives
better I/O scheduling opportunities for a smooth end-
to-end data flow. Recent efforts such as Moneta-D [7]
and MegaPipe [15], have advocated the use of the asyn-
chronous model with private channels.

Synchronous Completion: A synchronous comple-
tion allows posting I/O requests and reaping completion
notifications without context switches. Networks support
non-blocking posting of batch requests with polling com-
pletion within the same user-context. For low-latency
networks, this method delivers better application laten-
cies at the expense of higher CPU utilization. However,
as emerging NVM device latencies will fall below con-
text switch latencies, this approach proves to be more
favorable for storage as well [22]. High-performance
networks also allow applications to adaptively switch be-
tween blocking and polling for completion. It is a desired
property for storage, but no attempts have been made to
provide such functionality.

Rich I/O Operations and APIs: Modern intercon-
nects support operations such as remote data read and
writes, fencing, atomic compare and swap, atomic add,
scatter-gather I/O etc. Such hardware primitives make
complex application development simpler. Similar ex-
periences are also reported by the storage researchers
in [16, 19]. NVHeap [8] saves the heap-state of an active
application on NVM in a novel way and provides trans-
actional support to access it. As the NVM integration has
been transparent, these approaches do not provide much
control over I/O.
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4 A Case for Unified High Performance
Stack

The current unified abstraction of files is not aimed at
high performance and has plenty of performance over-
head due to the need for global synchronization, in-
efficient I/O memory management, and lack of useful
hints in multi-core environments [15]. One potential
solution is to redesign the complete storage stack from
scratch. However, as modern high-performance net-
working stacks offer very mature and stable implemen-
tations of desired key high-performance properties (see
Table 2), in this paper we propose using them to access
and transfer data to/from NVM devices.

Similar to the networks, high-performance storage in-
terfaces can provide directly user-space mapped hard-
ware I/O queues or channels for request postings and
completion notifications. Operating system and user-
space device libraries provide support for setting up di-
rect NVM device access from the user-space. The de-
vices implement multiple I/O request opcodes and asso-
ciated completion semantics.

The access abstraction is a simple byte-addressable
storage address space. Byte-addressable abstraction does
not impose any data structure and is expressive enough
to support a wide variety of higher-level storage sys-
tems such as hierarchical file-systems, databases or ob-
ject stores. These systems are responsible for the trans-
lation of higher-level storage objects, such as a file or a
database column, to a specific device address range. Af-
ter the translation, the data transfer happens directly be-
tween the device and user-space buffers. The data trans-
fer is done in a similar manner to a remote memory read
or write operation. The following factors further support
our case for a unified stack for common device manage-
ment and data access:

Unified operating system support: The unification
blurs the traditional boundary between network and stor-
age and enables common evolution of high-performance
I/O frameworks. A single stack provides uniform I/O se-
mantics and guarantees across multiple kinds of devices
(see Figure 2). This unification also simplifies the imple-
mentation of I/O mechanisms inside an operating system.
Both, network and storage, need capabilities to directly
access hardware, use adaptive notifications (callbacks,
blocking, polling etc.), share I/O memory management
with applications etc. Looking beyond the performance
properties, networking stacks also have everything from
device detection, configuration management, capabilities
discovery, efficient memory management etc. These ser-
vices largely simplify the device management.

Ready to use: Any modern high-performance net-
work stack implementation can be used as a drop-in re-
placement to access storage. The replacement allows

  

          application

mapped I/O 
channels

local NIC local NVM remote NVM

unified I/O framework

zero-copy
data

movement

Figure 2: Illustration of the unified I/O stack that can deal
with network, local NVMs, and remote NVMs under a
common framework.

storage to reuse interfaces, data structures, APIs, and
even (up to a certain extent) concrete implementations
of a stack! Many networking semantics have an imme-
diate appeal for storage applications. Features such as
remote read/writes can be used to access data from stor-
age. Fencing and ordering among I/O operations ensures
proper consistency guarantees (similar to a remote mem-
ory) for storage. Multiple storage devices can form a
multi/broadcasting group to implement replication. QoS
can be implemented by using multiple network traffic
classes. Furthermore, end-to-end semantics of the inter-
face/API ensures light-weight data access even in multi-
layer access environments e.g. virtualization.

Favorable advancements: Lastly, recent architecture
and systems advancements also facilitate this unification.
The byte-addressability nature of NVMs (e.g. PCM)
makes data access as simple as reading remote memory.
This fits nicely with remote memory access semantics of
RDMA. However, an NVM device itself does not have to
natively support byte addressability as long as it under-
stands the RDMA access model. With the revised host-
interfaces [18], NVMs can now be directly accessed via
networks, further blurring the gap between local and re-
mote storage. Repartitioning storage responsibilities be-
tween application and hardware, also makes it possible
to reuse standard user-space networking stacks.

5 Discussion

5.1 Operating System Support

As the key responsibilities of an operating system - ab-
straction, multiplexing, and layering - seem too pro-
hibitive for high-performance, we must revise the re-
sponsibilities between devices and the operating system.
Much of I/O management complexity from within oper-
ating systems can now be delegated to applications and
hardware. Instead of micro-managing, an Exokernel [12]
like the approach for OS design is more desirable. For
example, instead of performing fine-grained I/O schedul-
ing within an operating system, as has been done tra-
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ditionally, it should be involved selectively in coarse-
grained decisions such as when to schedule an I/O re-
quest class (e.g real-time, or backup) or controlling paral-
lelism and concurrency within hardware for QoS. Hard-
ware does a better job in fine-grained scheduling of indi-
vidual I/O requests. Additionally, operating system de-
velopers must remove the stigma associated with I/O of-
floading. An operating system must be able to efficiently
manage, extract, and communicate necessary contextual
information about I/O to the devices.

Protection in a shared environment can be provided
by generating access capabilities with the help of I/O de-
vices. For example, an RDMA device generates an ac-
cess identifier tag during the memory registration for a
data buffer. This tag must be presented by an application
for any access to the data buffer to verify access rights.

5.2 Hardware Support
Network and storage devices must be able to allocate
I/O channels, generate protection identifiers, install user
contexts and memory mappings etc. In order to be ef-
ficiently managed by the operating system, hardware
vendors need to come up with a standard communica-
tion interface for device management and configuration
such as openflow [17] for switches. Efforts have been
made recently to standardize storage host-device inter-
face [18, 20]. Interestingly, NVMExpress [18] shares
many key performance properties with high performance
networking devices. For example, directly accessible
hardware resources, doorbell write to issue a command,
multiple request, response queues, capability discovery,
interrupt coalescing, configurable data block size etc.

To avoid unnecessary operating system involvement,
devices must be educated about logical I/O primitives
with gradually increasing complexity. As we discussed
earlier, high-performance interconnects such as Infini-
band, already support rudimentary forms of these opera-
tions such as atomic fetch and add, atomic compare and
swap etc. We believe that with a minimal set of basic
integrated operations (e.g. locking, logging, atomicity,
serialization etc.), it should be possible to build higher-
level complex primitives such as transactions or replica-
tion (using multicasting) without bloating the I/O stack.

5.3 Open Issues
Multi-stage resource allocation: Resource allocation
in the control path of high-performance networks is a
multi-stage process. Different I/O resources (with as-
sociated state) are allocated at various stages of a con-
nection setup e.g. open channel, route discovery, device
resolution, connect, accept etc. However, storage has a
simple single-stage (e.g. open a file) access process. Re-

serving storage resources in a single step may lead to
wasteful resource usage. In order to avoid overcommit-
ment, additional access pattern and range related infor-
mation must be passed to the storage. However, due to
the lack of support in network interfaces to pass this in-
formation, it requires further development of new APIs.

Hardware multiplexing: Modern high-performance
controllers can typically maintain 64K to 1M active con-
texts. However, high-level storage primitives such as
files, can be in the billions. This will require some
coarse-grained multiplexing support from the operating
system such as the one found for virtual memory sub-
system. By installing hardware contexts in the storage
page-table, the operating system can move out of the way
of normal I/O processing. This mechanism maintains
the operating system control over I/O resources without
sacrificing the performance. However, this functionality
will require support from the storage hardware e.g. gen-
erating storage faults for an invalid access to files.

File semantics: Files are shared more often than sock-
ets. Depending upon the mode, file sharing can lead to
different consistency semantics. For example, access-
ing a shared file using a common request queue among
multiple applications can potentially provide serializa-
tion guarantees but this may not be possible with differ-
ent request queues or may require different I/O opcode.
The packet oriented nature of network APIs makes de-
velopment of stream-based storage applications difficult.

I/O failures: Direct-access zero-copy I/O has visi-
ble side-effects in the case of a failed operation. The
byte-addressable nature of NVMs makes data corruption
detection even harder. Hence, a more sophisticated and
precise error reporting and cancellation framework is re-
quired. One possible solution is to maintain error and log
data structures in DRAM, hence if there is a failure the
operating system can still perform error diagnosis on it.

6 Conclusion

Storage stacks are at a familiar crossroad. Performance
of I/O devices are improving at a much faster rate than
a single CPU capacity. Over the last 20 years, net-
works have undergone an evolutionary transformation
to support high-performance I/O. In this paper we ar-
gue that storage does not have to repeat the same steps
as networks and wait a further 20 years to undergo the
same transformation. Storage developers can directly use
abstractions, frameworks, and interfaces developed by
high-performance networks. This unification instantly
enables efficient, light-weight high-IOPS access to NVM
devices. The Blue Gene Active Storage project [13]
explores the integration of Non-Volatile Memory and
RDMA networks and could benefit from such an ap-
proach.
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