
Bringing Efficient Advanced Queries
to Distributed Hash Tables

Daniel Bauer Paul Hurley Roman Pletka Marcel Waldvogel
IBM Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland

{dnb,pah,rap,mwl}@zurich.ibm.com

Abstract— Interest in distributed storage is fueled by de-
mand for reliability and resilience combined with ubiquitous
availability. Peer-to-peer (P2P) storage networks are known for
their decentralized control, self-organization, and adaptation.
Advanced searching for documents and resources remains an
open problem. The flooding approach favored by some P2P
networks is ineffiencient in resource usage, but more scalable
and resource-efficient solutions based on distributed hash tables
(DHT) lack in query expressiveness and flexibility. In this paper,
we address this issue and introduce new efficient, scalable, and
completely distributed methods that strive to keep resource
consumption by queries and index information as low as possible.
We describe how to improve the handling of multiple subqueries
combined through boolean set operators. The need for these
operators is intensified by applications to go beyond simple exact
keyword matches. We discuss, optimize, and analyze appropriate
extensions to support range and prefix matching in DHTs.

I. INTRODUCTION

Interest in distributed storage is fueled by demand for
reliability and resilience combined with ubiquitous availability.
Peer-to-peer (P2P) storage networks are favored for their
decentralized control, self-organization, and adaptation. P2P
overlay networks can be characterized as distributed systems in
which all nodes have identical capabilities and responsibilities,
combined with symmetric communication. Nodes acting as
peers allows a structure free of single points of failure.

A key function of such a network is the location of
resources. Location comes in two distinct flavors: a lookup
by resource ID or a query for resources matching certain
properties. For lookup functionality, Distributed Hash Tables
(DHT) are generally considered to provide the most efficient
solution. However, for general queries, message flooding is
still be relied upon, which attains flexibility at the expense
of inefficient resource use. We show how to perform many
important classes of queries efficiently in DHTs, thereby
circumventing the need for flooding.

The many forms DHTs come in including space division [1],
[2], interval routing/skip lists [3]–[5], or tree-like structures
[6]–[9]. In this paper, we are not concerned about their in-
ternal operation, which varies widely, but about their common
interface, which resembles a hash table, with support for get,
put, and remove of elements addressed by a unique, exact
key.

A. Basic Search Methods

In current highly distributed databases and peer-to-peer
storage systems, three basic methods exist to search for a

resource. The first directs a search query to a centralized
directory. It is evaluated there, the data blocks that correspond
to the search query are determined, and the result of the query
transmitted back to the requestor. A disadvantage is that there
are no alternatives to avoid or compensate for failures, as there
is a single point of failure – the centralized directory. There are
also scalability issues, as every request will need to be handled
centrally. On the positive side, this approach does allow for
very powerful and flexible queries.

The second method uses an identifier-only (ID-only) access,
which can be carried out with the help of a DHT. Drawbacks
include that the ID needs to be known and that no queries
other than a request for a resource with a particular ID are
possible.

The third method is to use a flooding query. Here, the query
is transmitted to all its neighboring storage nodes, which in
turn pass the query to their neighbors. A benefit of this ap-
proach is that all kinds of methods of matching queries can be
implemented. Unfortunately, flooding is extremely expensive
in terms of both network bandwidth and computation at nodes.
Gnutella, for example, de-centralizes the file location process.
Users in a Gnutella network self-organize into an application-
level mesh on which requests for a file are flooded with a
certain scope.

B. Alternative and Extended Methods

In addition to these three basic methods, alternatives to im-
prove some of their deficiencies exist. For example, additional
replicated directories instead of a single centralized directory
may be used. However, there is still a small set of dedicated
failure points, and moreover, a high load may arise on the
replicas, both from queries and updates.

Another alternative is to use stored or cached queries
(employed, for example, in INS/Twine [10]), where IDs are
assigned to each expected query using, for example, a DHT.
When querying, some variants of the query are tried.

C. Contributions

We present CANDy (Content Addressable Network Direc-
torY), a general framework for querying, in a completely
distributed fashion, resources stored in DHT-based systems.
It extends the existing work in this area by offering flexible
queries while preserving the DHT efficiency.

Proceeding beyond keyword and substring searches, we
introduce value matching against distributed databases that

Subquery
ProcessingIndex DHT Resource DHT

Distributed Storage Nodes

Property Obtain
Resources

Query
Result
Set

Requesting Node

Analysis

Query
Analyzer

Subquery
Builder

Resource
Collector

User Agent
h(

pr
op

er
ty

),
 ..

.

pr
op

er
ty

 d
es

cr
ip

to
rs

se
t o

f r
es

ID
s,

 ..
.

S
et

 O
pe

ra
to

rs
S

ub
qu

er
ie

s
&

re
sI

D
, .

..

R
es

ou
rc

e,
 ..

.
Fig. 1. Component interaction between the CANDy user agent and the
distributed storage nodes.

consist of ranges or prefixes. In addition, it is shown when
and how Bloom filters [11] can (or cannot) help in the search
process. Finally, further improvements and a comparative
analysis of these mechanisms with existing work are provided.

The remainder of the paper is structured as follows. The next
section describes the design principles, which are then applied
to advanced queries such as a set of words, range searches,
and longest prefix match in Section III, and optimized using
Bloom filters in Section IV. Section V briefly assesses total
storage consumption, the number of messages transmitted, and
the scalability and resiliency of our approach. Finally, related
work is discussed in Section VI and the paper concluded in
Section VII.

II. CANDY DESIGN PRINCIPLES

DHTs provide a very efficient lookup of resources when
the resource identifier (resID) is known. Queries, on the other
hand, ask for resources that have certain properties. CANDy’s
approach is to use a DHT that links properties to resIDs. The
idea is to compute a property identifier (propID) for each
property of a resource and store the resID at the location of the
propID. As resources share properties, an entire set of resIDs
are stored under the same propID.

The index DHT stores property and index information, while
the resource DHT stores the actual resources traditionally.
Logically, these are separate entities but can be implemented
as part of a single DHT infrastructure.

In CANDy, a query is processed as shown in Figure 1.
Query processing comprises the following tasks:

1) The user agent analyzes the query, identifies the proper-
ties involved and resolves the data type of each property.
This is done using property descriptors.

2) Each property represents a set of resIDs. The user agent
translates the query into a sequence of set operations on
resID sets.

3) The user agent sends the query, now in the form of
a sequence of set operations, to the storage nodes that
store the corresponding resID sets. Each node processes
a subquery as the query is handed from node to node.
The last node returns the result to the user agent.

4) The result is a (possibly empty) set of resIDs. The user
agent then uses these resIDs to accesses one or more
resources using a DHT lookup in the resource DHT.

These steps will now be described in more detail.

A. Properties and Property Descriptors

Properties are name/value pairs of a certain type that de-
scribe resources. For example, an image document has a prop-
erty title of type string with value “Sunflowers”. The
propID is computed using a hash-function h() that is applied
to both name and value, i.e., propID = h(“Title=Sunflowers”).
The propID is then used for the propID-lookup.

As there are several ways of storing properties in the index
DHT, it would not be sufficient to know just the property
name. An additional data structure, the property descriptor,
is used to store information about property types and how
they are stored in the index DHT. For example, the property
descriptor for title indicates that title is of the type
String and stored as set-of-words. For other data types,
property descriptors contain more information. In particular,
comparable data types can be stored in hierarchical structures
that allow for range searches. This is described in more detail
in Section III. Property descriptors are stored in the index
DHT, using the name of the property to compute the storage
ID. Using the above example, the property descriptor for
title is stored using the ID h(“Title”).

B. Subqueries and Set Operations in Index Nodes

The result of a propID-lookup operation in the index DHT
is a set of resource IDs. A typical query asks for resources that
fulfill several property names or values rather than one single
property. This means that several propID lookups have to be
combined to fulfill the query. This could be done locally at
the requesting node, i.e., all resID sets could be transferred to
the requesting node, which then carries out the evaluation.
As resID sets may be large, such an approach requires a
large amount of network resources. CANDy uses a distributed
approach in which the query, in the form of a sequence of
set operations, is forwarded from one storage node to another
where individual propID lookups are evaluated on the fly. As
the query propagates, intermediate results in the form of resID
sets are added until the final result is returned to the requesting
node. A critical operation is the translation of the original
query into a set of subqueries and a sequence of set operations
such that the intermediate results remain as small as possible.

Hence we propose the following scheme: At the requesting
node, CANDy splits the search query into subqueries and a
set of operations that links them. This query comprises all
information on the resources to be located in the distributed
storage nodes. The supported set operations are union ‘∪’,
intersection ‘∩’, and set minus ‘\’. The complement ‘A’ can

be obtained from A ∩ B = A \B. Note that the complement
operator only makes sense in conjunction with a given base
set, where it can be computed using the set minus operation.
This is because it does not make sense in general to exclude
a small set from the set of all resources.

A query request is generated from of the set of subqueries
that have been identified, which includes the subqueries and
the set of operators. This information is encoded in a linearized
evaluation tree, e.g., using reverse polish notation (RPN) as
instructions for a stack machine. The query request is then
transmitted sequentially along storage nodes which processes
one subquery and links the result provided by the previous
node by means of the corresponding set operator. The request
is then adapted and the request forwarded to the next node
accordingly. Eventually, the last node sends the final result
back to the requesting node. To route the packet between
nodes an existing algorithm such as DHTs in [4], [10], content
addressable networks (CANs) [1], or Pastry networks [7] can
be used.

Consider the example where the keyword query for all
resources that do not contain sunflowers and portrait paintings
by Vincent Van Gogh could be (“Artist=Van”, “Artist=Gogh”,
not (“Title=Sunflowers” or “Title=Portraits”)), which can be
translated into four subqueries and written as

subQ1 ∪ subQ2 ∩ subQ3 ∩ subQ4 ,

where

subQ1 = “Title=Sunflowers”

subQ2 = “Title=Portrait”

subQ3 = “Artist=Van”

subQ4 = “Artist=Gogh” .

The subqueries and their set operators are then sent through
the network as illustrated in Figure 2 with each storage node
performing one subquery. Each subquery returns the resIDs
of the resources that contain the corresponding keyword. The
resID sets are then combined using the corresponding set
operator before the packet is forwarded to the next node.
In particular, for storage node 2 it does not make sense
to enumerate the complement set resIDQ1 ∪ resID2s, hence
resIDQ1 ∪ resID2s is marked as being a complement set
instead.

Note that when using an existing DHT algorithm to route the
query packet to the next node, O(log n) intermediate nodes are
expected to be traversed until the node that executes the next
subquery is reached. These intermediate nodes are omitted
from Figure 2.

When a large result set is to be transmitted to the next
processing node, a scout packet can be used to determine the
network address of that node and return it to the current node.
This reduces the load on DHT nodes that normally would
have been involved in forwarding the message. If the index
DHT has a message size limitation, the message may be split
into multiple segments, each accompanied by the range of
resIDs they represent. This is necessary to allow independent

Query: subQ1 subQ2 subQ3 subQ4)

docID1s

subQ1

docID3s

subQ3

docID4s

subQ4

subQ2

docID2s

?

Requesting
Node

Storage
Node 1

Storage
Node 2

Node 3
Storage

Storage
Node 4

subQ3 subQ4,

[subQ1 subQ2
subQ3 subQ4,

[(subQ1 subQ2
subQ3 subQ4,

subQ3 subQ4,

resID1s]

resID3s \ (resID2s
resID1s)]

(resID3s \ (resID2s
resID1s)) resID4s]

[subQ1 subQ2

resID1s resID2s]

[subQ1 subQ2

Fig. 2. Search example with subqueries.

processing of these messages while ensuring correct operation
of later set complement or exclusion operations. Messages so
split can travel independently and without reassembly to the
destination.

If the sets become too unwieldy to be stored even at the
storage nodes, the sets themselves can be split into multiple
subsets. Typically, this would happen by each node covering a
subset of the ID space as selected by an appropriate prefix. The
main node then only contains the list of ranges (or a range size
applicable to all ranges) covered by the subset. Each subset
will stored at its individual location, which is either directly
stored with the main node or can be calculated by the node,
such as h(start, mainID).

A query does not necessarily require the entire set to be
transfered to the next node before a set operation can take
place. When the sets are all ordered by a common criteria, the
set operations can be performed in streaming mode [12].

C. Building the Final Result

The resource collector first gathers all resIDs, which might
be spread over several subquery result packets, and combines
them into the final set of resIDs. From this set, each resource
is then found using the resource DHT. Note that, depending on
the complexity of the query, the resIDs might come from more
than one node. In such a case, the last set operation is carried
out by the resource collector before accessing the resources.

III. COMPLEX SEARCHES IN DISTRIBUTED STORAGE

NODES

In this section we present three different examples that
utilize the query architecture based on subqueries introduced
above, thereby allowing more complex search queries to be
formed, namely queries consisting of a set of words such
as property values, range searches and longest-prefix match
searches.

0 1 2 3

01 23

4 5 6 7

45 67

03 47

07

Fig. 3. Example of adaptation a hierarchical structured tree.

A. Set-of-words Searches

If a property value is composed of multiple words, then it
may be advantageous to use multiple propIDs. For example,
an image document with title “Yellow House” is stored under
both h(“Title=Yellow”) and h(“Title=House”). Hence, on the
one side, this allows the further decomposition of queries
leading to increased distributed processing whereas on the
other hand, it also allows the location of a resource by means
of a single property value.

B. Range Searches

Often, it is desirable to search for value ranges, rather than
queries that are exact or contain solely keywords. Consider,
for example, the search for all files smaller than 100 Kbytes,
for all resources between January 1st and March 31st, or for
all cities located between latitudes 45 and 49 degrees north
and longitudes 50 and 55 degrees east, or any n-dimensional
search range.

Two extreme cases may make the search slow and costly.
Firstly, only one access to a single node storing an index
resource – a set of resIDs as is addressed by an index identifier
(indexID) – is allowed. For all possible subranges a resID
set has to be stored. It can easily be seen that this sums up
to W · (W + 1)/2 index resources (Gauss’ formula), each
containing a subset of the resIDs, where W is the size of the
value space V (W = |V |). Secondly, only one single copy of
the resID is allowed. Hence each resID is stored in a single
node. This results in U −L+1 requests for index documents,
where L and U are the lower and upper bounds of the search
range. These two extremes show that either a lot of memory
space or a large number of queries are necessary to perform
a range search. This is impractical for most environments,
especially when the ranges have arbitrary granularity.

Hence, the amount of storage space required – a static
requirement – and the number of nodes in the network to
visit or index resources to retrieve – a dynamic requirement
– must be optimized. Both should be as small as possible but
might have different priorities depending on the application
scenario. If there is ample disk space but scarce networking
bandwidth or processing cycles, then the number of query
messages should be kept as small as possible.

A promising method to perform range searches efficiently
is to organize the range values in hierarchical tree structures
as shown in Figure 3. In the example tree structure with
the bounded value space V = {0, 1, . . . , 7} the values are

associated with subranges that are super-ordinated to higher-
level subranges. The example shows a four-level hierarchical
structure, in which the bottom level has the largest number of
nodes. The leaves (nodes at the bottom of the tree) comprise
the smallest set of values. In the extreme case, this can be just a
single value. If a node in the tree has no values associated with
it, it does not need to be stored. Here, the first leaf from the left
has the value 0, and the first node on the next level up covers
the values 0 and 1. The root (top-level node) represents the full
value space V . From the explicit tree structure or one defined
by an algorithm, values and value ranges can be found. Value
ranges use an algorithm that computes the largest common
subranges of the search range. The example in Figure 3 has a
branching factor k = 2, which means that each parent node is
connected to at most two child nodes. The index resource on
each node contains the indices of the values that are accessible
through this node. In addition, further information on parent
and child nodes, the branching factor, the number of levels
and query encoding is stored in the property descriptor of the
corresponding propID.

For example, when searching in the range {2, . . . , 6}, three
subqueries are generated: The first for the content of index
document 23, the second for index document 45 and the third
for index document 6. Without a tree structure, the same search
range would result in five single queries (one for each value),
nearly twice as many. At the other extreme, all values between
2 and 6 would need to be stored in the requested node which
needs considerably more storage space. Note that this effect
will be significantly more pronounced for larger value spaces
with larger trees.

The same algorithm can be used for higher branching
factors as well as by using the base that corresponds to the
appropriate branching factor. Our analysis does not consider
the case where k varies from level to level or even from
node to node, as the analysis of the resulting complicated
tree structure would only distract from our main objective.
When the value space reflects a continuous range each node
represents a bounded continuous subrange. In both discrete
and continuous ranges the granularity of the tree structure is
chosen such that the resID sets in the leaves are kept small
(e.g., checking only the first p letters in a string search). In
general, the storage requirements of the tree structure and the
number of queries required is logk W .

Next, we analyze the worst-case performance for a fully
populated and balanced tree. The number of levels of the tree
structure is, ` = 1 + dlogk W e . Under the assumption that
union is the sole operation supported by the DHT, directly or
indirectly through sending the individual parts to the request-
ing node, the necessary worst-case storage S for a branching
factor k is S = `, and the number queries Qu in the worst
case corresponds to

Qu =

{

2(k − 1)(`− 2) + k − 2, W > k and

k − 1, 1 ≤W ≤ k .

This is obvious when you consider the upper endpoint of
the range specified as a number in base k, where each digit

directly represents the number of nodes to retrieve. The same
observation, after inverting the address space, also applies to
the lower endpoint.

From Figure 3 it can be easily seen that {1, . . . , 6} is the
worst-case range for union, which can be obtained by unifying
the four subqueries sent to the nodes using N1 ∪N23 ∪N45 ∪
N6. The worst-case range for union is given by combining
the maximum number of nodes on each level which cannot
be replaced by a higher-level node and equals 2(k − 1) (left
and right part of the tree) for each level up to level l− 2 and
k − 2 for the middle part of the tree (i.e., when k > 2).

If the operation set minus (A\B = A∩B) is also supported,
then the number of worst-case search queries for this combined
case can be further reduced to

Qc =

{

(k − 1)(`− 1), W > 1 and

1 W = 1 ,

based on the observation that any query consisting of more
than k/2 nodes can be converted to subtracting the remaining
nodes from the parent. The necessary worst-case storage is not
affected by this operation. As an example, the range {1, . . . 6}
can then be expressed as N07 \N0 \N7 resulting in only three
subqueries.

C. Longest Prefix Match

Another lookup method that has gained popularity is longest
prefix match. It is commonly used to determine efficiently
into which of several categories a particular identifier (number,
string, . . .) falls.

Tries have traditionally been used to perform longest prefix
matches [13]. Applying them to DHTs can be done in a
similar manner to the range searches described above. A prop-
erty of the tries, that nodes near the root are more frequently
accessed, is useful within a single system, as performance
is improved through caching effects. In a distributed system,
however, where many independent nodes may perform queries
at the same time, this is prone to storage node overload.

When the total access time to retrieve information is signif-
icant but the per-node access time is high (such as in DHTs),
large degrees of nodes become necessary [14]. As a result,
memory requirements skyrocket, and update performance de-
teriorates. A better solution is thus needed.

Binary search on prefix lengths [15], [16] seems to be the
ideal candidate, as it is already based on hashing. To use it, all
prefixes are simply stored in the DHT. Binary search requires
a three-way comparison to decide whether the final solution
has already been found or whether the search needs to go on:
if so, in which direction. Hash lookups only provide hit or
miss answers. To ensure that all entries can be found, some
marker nodes need to be added to guide the search towards
longer prefixes if a natural higher-level prefix does not already
exist. When applying the techniques described in [15], [16],
the search time is bounded by the logarithm of the search
depth.

Line Search [17] can be used to extend binary search on
prefix lengths to two dimensions.

In
cr

ea
si

ng
 P

re
fix

 L
en

gt
h

Binary Search Tree Structure

Fig. 4. From tries to hash tables

IV. OPTIMIZATION USING BLOOM FILTERS

A. Bloom Filter Arithmetic

Bloom filters [11] have proven extremely useful for their
extremely compact representations of set membership, which
results in small amounts of data to be transmitted [18]. The
compactness comes at the expense of possible false positives,
the rate of which can be tuned by changing the size (and thus
the density) of the filter. Another drawback is that the set can
no longer be enumerated, at least not if the domain of the
set is sizable. The Bloom filter is limited to set membership
queries.

A Bloom filter is a bitmap that represents the union of
bitmaps of the individual entries, in which an entry is rep-
resented by a few bits set to one, whose position have been
selected by a small number of hash functions. Abstractly, a
Bloom filter representation B(X) of X can be viewed as a
non-enumerable version of X with some false positives ε(X),
B(X) = X ∪ ε(X).1 This results in the following operations
on Bloom filters, which we will use in our description below.
All binary operations are commutative and associative.

Converting from set to Bloom filter: A Bloom filter can
obviously be created from a set: B(X)← X

Intersection of Bloom filters: Two Bloom filters of the same
size and using the same hash functions can be intersected
by logical AND of their bitmaps: B(X ∩ Y)← B(X) ∩
B(Y).

Union of Bloom filters: Two Bloom filters of the same size
and using the same hash functions can be united by
logical OR of their bitmaps: B(X ∪Y)← B(X)∪B(Y).

Intersection of Bloom filters with an enumerable set:
Probing a Bloom filter for presence of each element of
an enumerable set leads to a set with false positives:
(X + ε(X))∩ Y ← B(X)∩ Y . Obviously, intersecting a
Bloom filter of a set with that set will return the original
set: B(X) ∩X = X .

B. Intersection Operation

Reynolds and Vahdat [19] reduced the message size required
for the execution of keyword intersection queries through the
addition of Bloom filters.

In the simplest case, where just two sets corresponding to
keywords have to be intersected, A and B, stored on nodes

1For ease of explanation, we neglect that the (infinite) set of false positives
also depends on the size of the Bloom filter and its constituent hash functions.

N? NA: What is A ∩ B? Query
NA NB : B(A) Bloom filter of A

NB NA: B(A) ∩ B Approximate result

NA N? : A ∩ B = B(A) ∩ B ∩ A Final result

Fig. 5. Distributed intersection supported by Bloom filters

N? NA : What is A ∩ · · · ∩ Z?
NA NB : B(A)

NB NC : B(B(A) ∩ B) = B(A ∩ B)

...

NY NZ : B(B(A ∩ · · · ∩ X) ∩ Y) = B(A ∩ B ∩ · · · ∩ Y)

NZ NY : B(A ∩ B ∩ · · · ∩ Y) ∩ Z

NY NX : B(A ∩ B ∩ · · · ∩ Y) ∩ Z ∩ Y

...

NB NA : B(A ∩ B ∩ · · · ∩ Y) ∩ Z ∩ Y ∩ · · · ∩ B

NA N? : B(A ∩ B ∩ · · · ∩ Y) ∩ Z ∩ Y ∩ · · · ∩ B ∩ A

Fig. 6. Distributed multi-set intersection supported by Bloom filters

NA and NB , the process is shown in Figure 5. Note that
B(X) represents the Bloom filter representing set X and the
requesting node is known as node N?. Reuse of the previous
message is indicated by a light gray background .

Given the above set of operations, we can see that B(B(A)∩
B)∩A = A∩B. The advantage is that the sets A and B are
never transmitted, only a compact representation of A (B(A))
and a close approximation of the final result. This does not
help much if A and B share many elements, but significantly
improves the case when A and B are large and have few or
no elements in common.

The generalization for intersection among multiple sets is
shown in Figure 6. Instead of having a forward path with
Bloom filters and a reverse path with approximate sets, the
second path can also be performed in forward direction, from
Z over A to Y, or in any other order.

C. Exclusion Operation

Another common operation is exclusion (“and not” or “set
minus”). This operation seems impossible, as Bloom filters
cannot be complemented nor do they support the elimination
of elements by clearing some bits in the filter, as this would
probably lead to the eliminatation of some other (real) ele-
ments of the filter.

Figure 7 presents our solution to the binary exclusion prob-
lem. The algorithm is based on X \Y = X∩ Ȳ = X∩X ∩ Y .
It is a shortcut calculation of intersection (lines 2 and 3), but
the combination in step 4 is different. A generalization where
(A ∩ · · · ∩M) \ (N ∩ · · · ∩Z) can be calculated as shown in
Figure 8.

Path separation is not needed if there is only a single set
to the left of the exclusion operator. Instead, the mechanism
described in Figure 6 can be used almost verbatim, with only
the last intersection symbol in the result message changed from
intersection to exclusion.

N? NA: What is A \ B?
NA NB : B(A)

NB NA: B(A) ∩ B

NA N? : A \ B = A \ B(A) ∩ B

Fig. 7. Distributed exclusion supported by Bloom filters

N? NA : What is (A ∩ · · · ∩ M) \ (N ∩ · · · ∩ Z)?
NA NB : B(A)

NB NC : B(A ∩ B)

...

NM NN : M = B(A ∩ · · · ∩ L) ∩ M

...

NZ NY : B(A ∩ · · · ∩ Y) ∩ Z

NY NX : B(A ∩ · · · ∩ Y) ∩ Z ∩ Y

...

NO NN : B(A ∩ · · · ∩ Y) ∩ Z ∩ · · · ∩ O

NN NA : B(A ∩ · · · ∩ Y) ∩ Z ∩ · · · ∩ O ∩ N

NM NL : B(A ∩ · · · ∩ L) ∩ M

...

NB NA : B = B(A ∩ · · · ∩ L) ∩ M ∩ · · · ∩ B

NA N? : (B ∩ A) \ M

Fig. 8. Distributed multi-set exclusion supported by Bloom filters

It could be argued that the process can be simplified by
calculating the intersection among the base set, A · · ·M ,
and the excluded set, n · · · z, separately, and performing the
exclusion only at the very end. Although this would lead
to the correct result, the amount of data transmitted would,
in general, be unacceptable. The intersection among N · · ·Z
could be huge compared to the base set and the final result.
The additional inclusion of the Bloom filters for A · · ·M into
the calculation of the excluded set prevents the protocol from
transmitting much more data than is part of the base set, and
thus is not relevant to determining the result set.

If the intersection between the base set and the excluded
set is large in comparison to the result set, it would be useful
to avoid transmitting it as elements, but keep it only as a
Bloom filter representation. Unfortunately, the solution above
is the best known approach and, because of the false positives
involved, these improvements do not seem feasible.

D. Union Operation

The third major operator used in set operation is union
(inclusion, conjunction). Distributed operation of the union
operation requires each element of the result set to be trans-
mitted over the network at least once. The straightforward
implementation of the (binary) union operation described
earlier consists of individual transmission of the contributory
sets to the next hop in the course of query processing. The
elements shared by the two contributory sets are transmitted
to the destination twice. If the sets are identical, which is

the worst case, the data transmission doubles compared to the
optimum transmission.2

Unfortunately, it does not seem possible to do better than the
straightforward implementation, because the shared elements
would need to be communicated between the storage nodes to
prevent duplicate delivery. This in turn involves transmitting
the shared elements over the network twice: once between the
storage nodes and once from the storage nodes to the next
hop.

Even though this means that the total transmission size
cannot be improved, using Bloom filters to calculate the shared
set (=intersection) and then preventing duplicate delivery to the
next hop can be advantageous, especially when the recipient
of this (potentially intermediate) result has limited bandwidth.

To process unions as part of Bloom-filter-optimized queries
(e.g. as explained in Figure 8), any term can be considered
to be constructed out of unions as a disjunctive normal form.
The conjunctions will be evaluated as a lower-level subquery
and their result used for the higher-level query sequence. This
is applicable to unions in Bloom filter form as well as in an
element listing.

V. ASSESSMENT

What follows is a qualitatively assessment of the perfor-
mance of CANDy’s compared with a solution based on a
central directory and an approach that uses flooding.

A. Storage Considerations

The flooding approach uses a set of equal nodes or peers,
in which each node stores a subset of the resources together
with the corresponding properties. As the resources are stored
together with the properties on the same node, no refIDs are
required. In terms of storage, the flooding approach is optimal.

The central directory solution uses a central server to store
property information and to link property values to resIDs.
As all property information is available at the central server,
resIDs do not have to be replicated for each matching property.
The total storage required for this solution is then given by the
storage requirements of the resources themselves and the sum
of all stored property values and one resID for each resource.
In contrast to the flooding approach, storage space for the
resIDs has to be provided. The resIDs are, however, very small,
and for all practical purposes the additional storage can be
neglected.

CANDy distributes the property information and the asso-
ciated resIDs across the index nodes. Even though property
information is mapped to propIDs by the user agent, index
nodes still need to store the complete property information
in order to resolve hash collisions. The distributed nature of
CANDy requires that an individual resID is replicated multiple
times, once for each property that it matches and additional
times to allow substring matching and range searches. As the
number of properties of a resource is limited, an individual
resID will typically be replicated less than 100 times. The

2When the two sets are disjoint, obviously no improvements can be made,
as each element will already be transmitted only once.

storage overhead is small compared to the optimal solution,
as an individual resID typically consists of only a few bytes.

B. Number of Message Transmissions

The flooding approach needs to distribute the query to
all nodes to find all matching documents. The performance
of flooding depends on the topology, but in order to reach
N nodes at least N messages have to be sent. In practice,
flooding is much less efficient as an individual node will
receive the same message multiple times. Clearly, flooding
does not provide a scalable solution.

The central directory solution requires four message trans-
missions. The query is sent to the directory server, which
answers with the set of matching resIDs. An ID is looked up
and the resource is accessed. In terms of messaging overhead,
the centralized directory approach is close to optimal.

CANDy’s messaging overhead is determined by the com-
plexity of the query. In particular, the sequence of set opera-
tions also determines the number of message transmissions. As
typical queries involve just a very small number of properties,
the messaging overhead is also very small, on the order of a
few messages.

C. Scalability and Resiliency

The flooding approach provides excellent resiliency against
node and network failure. As long as a resource is reachable
in the network, the flooding approach will find it. The lack
of scalability due to excessive generation of network traffic
makes the flooding approach unusable for even moderately
sized networks.

The central directory approach is very efficient, but lacks
both scalability and resiliency. The central server is a bottle-
neck that can get overloaded by a large number of queries.
A failure of the central server has fatal consequences for the
whole system.

While CANDy is moderately less efficient than the central
directory approach, it provides a scalable and more resilient
solution. Due to its distributed approach, it spreads the load
across several nodes without requiring excessive network
resources. It is resilient in that an index-node failure affects
the precision of the result, but not the overall functionality.

VI. RELATED WORK

Some recent proposals blur the boundary between structured
(i.e., DHTs) and unstructured (Gnutella-style) P2P networks.
Cohen et al. [20], for example, take advantage of shared
interests to try to attain good results with limited flooding
while pSearch [21] brings limited flooding to a modified DHT
in order to get soft queries. The remainder of the section,
though, will focus on papers sharing our goal of bringing
advanced queries to essentially unmodified DHTs.

INS/Twine [10] is an intentional resource discovery sys-
tem [22], where resources are described by attribute/value
trees (AVtree), with the attributes organized orthogonally and
hierarchically. Each AVtree is stored and retrieved under a key
generated by hashing the tree. While INS/Twine solves the

‘exact-match’ problem, it produces a potentially large number
of keys and consequently stores the same resource description
on a large number of different nodes. Set operations, restricted
to intersection, are implicit in the construction of the query
AVtree.

Felber et al. [23] extend upon the INS/Twine concept by
overlaying the DHT with a rooted directed acyclic graph
(DAG). The edges of this DAG represent queries that can be
used to refine the result set. The actual query process becomes
a tight interaction between the requesting node and the DAG.

Approximate range searches are supported by Gupta et al.
[24]. When a query for range [s, e] is made, they try to locate
a range [s− ε, e + ε′] that has been stored in the DHT, which
minimizes ε, ε′. To make this fuzzy match, they use distance-
sensitive hash functions. The result needs to be postprocessed
to evict out-of-range matches.

Substring searches have been described in [25] through the
intersection of the sets indexed by the n-grams of the string.
Similar to Bloom filters, these are subject to false positives,
which then need to be weeded out by inspecting the actual
objects.

A completely different approach is taken by PIER [26].
Instead of distributing the query processing, they implement
a fully functional relational database on top of a DHT. Their
trick is to disperse the database objects into the DHT, essen-
tially treating the DHT as a distributed disk.

VII. CONCLUSIONS

A major challenge in the use of distributed storage is the
location of resources with a flexible and expressive query
language, but without reliance on single points of failure or
requiring the waste of network or storage solutions.

We have presented CANDy, a solution to the problem for
expressive distributed searching that is (i) fully distributed, (ii)
efficient and scalable in its use of computation, storage, and
communications resources, (iii) modular and flexible, and (iv)
is able to take advantage of any underlying DHT technology.

CANDy provides the full range of set operations applicable
in this context. These operations are available both to the
querying agent and used internally to extend exact matches
to range and prefix searches. We also extended the use of
Bloom filters for handling exclusion and showed that a further
extension to union operations is not reasonable.

REFERENCES

[1] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In Proceedings of
ACM SIGCOMM, September 2001.

[2] Marcel Waldvogel and Roberto Rinaldi. Efficient topology-aware
overlay network. ACM Computer Communications Review, 33(1):101–
106, January 2003. Proceedings of ACM HotNets-I (October 2002).

[3] Greg N. Frederickson. Searching intervals and compact routing tables.
Algorithmica, 15(5):448–466, May 1996.

[4] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of ACM SIGCOMM 2001, pages 149–160,
San Diego, CA, USA, August 2001.

[5] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer,
and Alec Wolman. SkipNet: A scalable overlay network with practical
locality properties. In Proceedings of USENIX Symposium on Internet
Technologies and Systems (USITS ’03), March 2003.

[6] Karl Aberer, Manfred Hauswirth, Magdalena Punceva, and Roman
Schmidt. Improving data access in P2P systems. IEEE Internet
Computing, 6(1), January/February 2002.

[7] Anthony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), pages 329–350, Heidelberg, Germany, November 2001.

[8] Ben Y. Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, University of California, Berkeley, April
2001.

[9] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing
nearby copies of replicated objects in a distributed environment. In ACM
Symposium on Parallel Algorithms and Architectures, pages 311–320,
1997.

[10] Magdalena Balazinska, Hari Balakrishnan, and David Karger.
INS/Twine: A Scalable Peer-to-Peer Architecture for Intentional Re-
source Discovery. In Pervasive 2002 - International Conference on
Pervasive Computing, August 2002.

[11] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, July 1970.

[12] Russell F. Haddleton. Parallel Set Operations in Complex Object-
Oriented Queries. PhD thesis, University of Virginia, January 1998.

[13] Willibald Doeringer, Günter Karjoth, and Mehdi Nassehi. Routing on
longest matching prefixes. IEEE/ACM Transactions on Networking,
4(1):86–97, February 1996.

[14] Henry Hong-Yi Tzeng and Tony Przygienda. On fast address-lookup
algorithms. IEEE Journal on Selected Areas in Communications,
17(6):1067–1082, June 1999.

[15] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner.
Scalable high speed IP routing table lookups. In Proceedings of ACM
SIGCOMM, pages 25–36, September 1997.

[16] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner.
Scalable high-speed prefix matching. Transaction on Computer Systems,
19(4):440–482, November 2001.

[17] Marcel Waldvogel. Multi-dimensional prefix matching using line search.
In Proceedings of IEEE Local Computer Networks, pages 200–207,
Tampa, FL, USA, November 2000.

[18] Andrei Broder and Michael Mitzenmacher. Network applications of
Bloom filters: A survey. In Proceedings of the 40th Annual Allerton
Conference on Communications, Control, and Computing, pages 636–
646, 2002.

[19] Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword
searching. In Proceedings of Middleware 2003, June 2003.

[20] Edith Cohen, Amos Fiat, and Haim Kaplan. A case for associative
peer-to-peer overlays. volume 33, January 2003. Proceedings of ACM
HotNets-I (October 2002).

[21] Chunqiang Tang, Zhichen Xu, and Mallik Mahalingam. pSearch:
Information retrieval in structured overlays. volume 33, January 2003.
Proceedings of ACM HotNets-I (October 2002).

[22] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy
Lilley. The design and implementation of an intentional naming system.
In Symposium on Operating Systems Principles, pages 186–201, 1999.

[23] Pascal A. Felber, Ernst W. Biersack, Luis Garcés-Erice, Keith W. Ross,
and Guillaume Urvoy-Keller. Data indexing and querying in DHT peer-
to-peer networks. In Proceedings of ICDCS 2004, Tokyo, Japan, 2004.

[24] Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadi. Approximate
range selection queries in peer-to-peer systems. In Proceedings of
the First Biennial Conference on Innovative Data Systems Research,
Asilomar, California, USA, January 2003.

[25] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon Thau Loo,
Scott Shenker, and Ion Stoica. Complex queries in DHT-based peer-to-
peer networks. In Proceedings of IPTPS 2004, 2004.

[26] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham Boon, Thau Loo,
Scott Shenker, and Ion Stoica. Querying the internet with PIER. In
Proceedings of 19th International Conference on Very Large Databases
(VLDB), Berlin, Germany, September 2003.

