E*PCOS2011

Subsystem and System-level Implications of PCM

Robert Haas, Xiao-Yu Hu, loannis Koltsidas, Romarrletka
IBM Research — Zurich, 8803 Ruschlikon, Switzerlginda,xhu,iko,rap}@zurich.ibm.com

ABSTRACT

Emerging data-centric workloads necessitate systeithshighly scalable storage components, not onlierms of
capacity, but also in terms of performance and eneffigiency. These requirements, in combinatiorhveitivances

in Storage Class Memory (SCM) technologies, will dribe departure from traditional memory and storage
architectures. The focus of this paper is on systhatsemploy Phase-Change Memory (PCM) to either camgté

or replace traditional media such, as HDDs, protebi@éM, and Flash. We study possible uses of PCMsxcthe
entire stack, and present an analysis of the impsicatihis has for the various components, such asairememory
subsystem, storage subsystems, operating systeesysfiéms and databases, as well as of its impattteooverall
system architectures. Key problems introduced by the medium are identified and solutions are outlined,ctwhi
we believe, will be very valuable for the designera@ft-generation data-centric systems and application

1. Introduction

Newer workloads pose ever higher performance arcHpacity demands on main memory and storage, ogeatin
technology-scaling challenges and new possibilitieglifenuptions [1]. Whereas the main-memory Dynamicdam
Access Memory (DRAM) technology may exhibit diffites to scale down below 30 nm, the Hard Disk Drive
(HDD) technology not only exhibits a substantial sidewn in areal-density growth, but also a continuingrelase

in the number of IOPS (I/O operations per second) abized to the storage capacity per platter or peicdev
Recently, NAND-Flash-based Solid-State Drives (SSDeitexl to fill in the widening performance gap betwee
processors and storage systems. However, scaioghak a detrimental impact on Flash, particularli wie more
aggressive multi-level cell technology. Workloatattrequire fast access over increasingly large efstalserefore
necessitate alternatives to these traditional tdolgies, with inevitable architectural implications att mmly the
memory and storage subsystem but also at the seftawvat system levels.

In this paper, we provide a holistic analysis of thelioagpions the introduction of Phase-Change MemoryMP@as

for subsystems and at the system level. Secti@mol&slat the issues arising when PCM replaces aoriined with

existing DRAM main memory, and Section 3 focuseshenimplications of persistency in this contexteihSection
4 delves into aspects of the storage subsysterh Bgetion 5 covers the software-level aspects in ad@osense,
and specifically discusses how PCM will affect fildsys and database architectures. Finally, the systgai-|
implications are addressed in Section 6, and comelgsire presented in Section 7.

2. Traditional main-memory usage

In terms of main memory, PCM, given its higher dgnand energy efficiency, has the potential to clement or
replace DRAM provided that suitable solutions adelrés finite endurance, read/write latency penalty and
asymmetry. A number of techniques have been degdltp achieve write reduction, and hence increaskfétiene

of PCM. Starting at the PCM circuit level itselfethorter read latency can be exploited to eliminedendant bit
writes by first comparing the current value agaimg preceding bit value. Also, wear leveling can miggthe
address locality of workloads and help wear out agllenly: wear-leveling techniques can be implementethe
PCM circuit itself to perform fine-granularity shifgnwithin a line in a page, or at the memory controtter
periodically swap larger memory segments containioigand cold memory pages [2], or a moving gap canded
[3]. Combinations of such techniques have been showincrease the lifetime by almost two orders ofynitade

using a typical benchmarking program directly aceesBICM as main memory and assuming that the tectyclan
sustain 18rewrite cycles [2].

In addition, the main memory can be made hybrid lagipg a DRAM buffer in front of PCM to reduce thember
of writes to PCM. The memory controller uses the DRAMfer as a hardware cache to perform intelligerite
scheduling to PCM as well as to write only the data cached page that has been modified. By combisiich
techniques the lifetime of hybrid architectures cobddextended by a factor of three with only a smalidivare
overhead [4].

All the above write-reduction schemes also contriboteeducing access contention due to the read/asigenmetry
of PCM. However, because the write latency is typjctdur times higher than the read latency, an inogmead
request may still be unacceptably delayed by an @mggerite operation to the same PCM memory banks Téi
addressed by the preemption of write operatiomxpedite reads, as is done by adaptive write canoellahd Multi-

Level Cell (MLC) write pausing schemes [5]. The dbask of those schemes is that they increase the citypdé

the memory controller because of the large queueité vequests.

Given the widening speed gap between CPU and DRRG&M should not aggravate performance issues evén if i
enables density scaling. Hybrid schemes that canthiel performance penalty of PCM are of course ohsisn, but
simulations have also shown that the use of narrouffers in PCM and other architectural optimizatiaas lead to
similar performance levels with Single-Level Cell (SUEIM as those of DRAM in terms of application del&y [
Given that MLC PCM significantly increases the reaml avrite latency while boosting capacity, shifting the
operation mode of cells between single-level and Aeill operation based on the actual memory capdeityand

at runtime can achieve a dynamic trade-off betwatamty and density, but requires both hardware &hdupport to
dynamically adapt the memory capacity [7].

3. Persistent main-memory usage

An even more disruptive characteristic than the itessaling is thepersistency of PCM. High-performance access to
persistent data can not only accelerate system#isantly (e.g., boot process, hibernation, and wgitii application
data and file-system check-pointing), but also retikdem more reliable. Enterprise systems already grstame of
their DRAM memory content against power failures vytbtected memory based on battery-backed, Flash-backed,
or disk-backed mechanisms. One approach is to ldicapppns access a protected memory region thraymgeific
APIs to store their data structures [8],[9]. In ead power failure, applications reconstruct their steien those
protected data structures, whereas the content imiinotected region is lost. In a more compreheregproach, not
only application data, but the entire OS is locategrbtected memory so that upon a normal shutdowan mower
failure, processor caches must be flushed and additinformation (i.e., processor registers) musivMpigen back
into protected memory. This process is similar toefmating using a disk. A special boot procedure trenth
restore registers before normal operation can hemed. However, similarly to a corrupted filesysterherve special
off-line tools are required to regain a consisteateststarting such a system from its protected mm&mory cannot
fix potential memory leaks, invalid pointers, or lockwiglations. In these cases, the protected main-mecarient
must be discarded, and a reboot from disk musbbe,desulting in a potential data loss. Similanith a PCM-only
main memory, the discard operation would requirettiegesome regions of the PCM. The advantage of MPC
based main memory is that, in contrast to traditigpratected memory mechanisms, which only scale with the
DRAM size, it does not have this limitation.

A drawback of a persistent main memory is that typigaintzations of memory accesses from the processgr ma
cause a reordering of a group of writes and thugeléize system in an inconsistent state if the systeps before all
writes complete. Hence suitable solutions for updation-volatile data structures are required to nbt gnarantee
durability, i.e., ensuring that all writes reached persisteainory, but als@onsistency, in the sense that a group of
write operations is performed atomically and thatdidering between certain writes is preservedytesns without
protected main memory, this has been solved by wsinghronous writes or by committing grouped writesally to

a storage device together. Especially ungrouped synohs writes to HDD are detrimental to system peréorce;
this is not the case on PCM where small writes inowr latency. Therefore, PCM has the capability to acatde

system performance with synchronous writes indep#noewhether they are grouped or not. Many concéys
provide consistency exist, e.g., buffer cache indjistems, persistence interfaces such as the Jesiat®ece API [9]
or RVM [8], databases, transactional memory [10], exsistent key value stores. All of them have been opgidhto
bring data into an appropriate format (e.g., inodéss,for serialized objects) for disk-based storsyggtems and to
schedule I/Os according to the characteristics otkbbased disk storage. For all these conceptsjmibans to
guarantee consistency are log structures or copyrite-aperations [11]. These concepts may also bd usth
persistent main memory. For instance, fine-graimgdates with copy-on-write have been proposed in BRESat
the cost of additional hardware primitives for atompclates. BPFS shows how an interface built on togtarige
devices can be re-implemented on persistent main ngemor

Consistency guarantees in main memory have also hddressed using transactional memory (TM) [10]. As
committing transactions to persistent storage carelsyeld or not done at all, TM only provides persisyeas long

as a clean shutdown can be guaranteed. A trans&eteps modified data in a log-like dedicated wréeumntil it is
committed successfully and changes are made visiliteerwise, the transaction is aborted by restotivgginitial
state. The programmer can simply mark the codecsetdi be executed atomically accordingly. The contimnaof
PCM and a TM would augment the system durability llgetn [13] it was shown that such a combination &en
achieved with limited overhead on top of Flash.

Another challenge arises from combining volatile pacsistent main memory: References to and from diatetsres
in non-volatile memory have to be handled with camy reference in volatile memory to an object in nofatite
memory might cause a memory leak after a powerr&il&imilarly, data loss can result from referencesidn-
volatile data structures to objects in volatile memdtyen references between two distinct non-volatile nigmo
regions are critical because one of the regions mighbe accessible after a failure. Although currentmiters do
not yet make such checks, libraries to perform singtks at run time exist [14].

Persistency may require the use of encryption ahmemory. Storage systems use block cipher madesndrypt
sectors using a single key, and tweakable modesadhoam encryption of large numbers of blocks witle same key.
Byte-addressable persistent memory conflicts withftked sector sizes of those encryption modes: Aigiothe
encryption block size is rather small (up to 32 byt¢he block cipher mode chains all blocks in acsesb that an
entire sector must be decrypted and re-encryptediéoety a single word has been modified. This caratidressed
by a hybrid DRAM-PCM memory in which DRAM is uses @ byte-addressable cache in front of page-baskt PC

4. Storage subsystem usage

Existing storage architectures cannot fully benefitrf the low-latency and byte-addressability charaties of

PCM. The high latency of the I/O bus and the useaafitional block-based interfaces prevent the execwdf reads
and writes at word granularity and low latency. E¥sgh-performance 1/O buses, such as PCl-e, arasuitgble as
they are primarily designed for bulk data transférg].[As discussed above, exploiting the full benefitsPCM

requires that the CPU can access it directly withroomload and store commands over the memory bus.

Nevertheless, attaching persistent low-latency messdo the I/O bus is attractive for at least thresons. Firstly,
the latency and endurance characteristics of PCMrderof magnitude better than those of any oty bf non-
volatile memory currently in use (with the exceptiaf battery-backed DRAM) and can still be leveradedpite the
performance limitations of the I/O bus. Secondly, gris¢ing PCM on the memory bus will require extensive
hardware and software changes, with the risk of nmgirmore subtle performance bottlenecks, such ek lo
contention in kernel data structures associated \eithirsy 1/0 requests. Therefore, leveraging PCMhia $torage
hierarchy is a more immediate path towards suppoitiegeasingly demanding workloads. Thirdly, simijatb
HDDs, aggregating pools of PCM storage in netwdthehed storage controllers has very desirable bitlia
availability, serviceability and fault-tolerance beatgfwhich will drive the adoption of storage-attacHe@M in
enterprise environments.

Storage architectures increasingly leverage heterogsrtechnologies such as Flash, HDDs, and tapestais the
combined performance and capacity growth, similaolymulti-level and hybrid memory architectures. Givea th

significantly higher endurance and performance 6MPas compared to Flash, the shift towards PCM tall
determined by the availability of high-density awavicost chips. Until sufficient such chips are avddalstorage
subsystems can already make use of hybrid device$ Flamory can be used as the permanent storage for dat
whereas PCM is used to store logical-to-physicateskimappings and other metadata. For these puybsdsyte
addressability of PCM may even be an additional atige [15]. The PCM portion of the device can alsauged to
absorb writes, either as a low-latency, update-in-plariite cache in front of the Flash memory or fogding small
updates to Flash pages, effectively reducing the \artelification in Flash. As a result, the lifetime bktFlash
device is extended because most writes are beinghbatoss;n PCM. Of course, this requires careful desigansure
that in such a device PCM will not wear out faster thiash does.

5. Software-level usage

The 1/O software stack of current systems, includipgrating system I/O schedulers, device driversyiitems and
database storage engines, has been designed amizepgtto accommodate the millisecond-range seekstiofe
HDDs. A performance improvement of almost two osdgfrmagnitude over HDDs can be achieved thanksetdyte
addressability of PCM; however, new bottlenecks wdlibcurred because of inefficiencies and overheadbdn
current stack that were previously hidden by the hégdncy of HDDs [16]. For instance, about 20,00Qringions
are required to issue and complete a typical 4 kBré@uest in Linux. When using a PCM-based storagécd
instead of HDDs, this overhead accounts for more @00 of the total latency per request. A significamount of
the latency can be saved by completely bypassind/@echeduler of the OS and by removing certairkitog
structures in the kernel and re-implementing other$oels-free data structures, so that many threadsseave
interrupts in parallel. Of course, a system could detefy avoid relying on interrupts for 1/0O by allowjrnthreads to
spin in busy-loop instead of sleeping, thus saviegakency of context switching. Although this teciue can reduce
latency, it entails a significant increase in CPUzation, and thus may only be suitable for very smejuests [16].

The main mechanisms to organize and store datéstmerdy are filesystems and databases, operatingtigiien top
of the I/O stack. Similarly to hybrid memory andrsige subsystems, filesystems can take direct adwanfagCM,
possibly in combination with Flash and HDDs, eitfagrtheir metadata or the data itself.

PCM will be particularly suitable for filesystem metaal for three reasons. Firstly, accesses to filesyshetadata
typically follow random-like patterns, and with PCMetlatency of random accesses for both reads ardswsd
lower than with either Flash or HDDs. Secondly, tiy¢eladdressability of PCM allows metadata updatesoat w
granularity, resulting in less bandwidth consumptiol fewer writes, provided a suitable interfacesied instead of
the block-based interface (typically employing 512181 kB blocks). Thirdly, the non-volatility of PCkhsures that
modifications to metadata are durable once the C&lbechas been flushed. Thereby, filesystem metadata ribt
need to occupy precious DRAM buffers, even thouattspof it may be cached in-memory for better perforceaand
longer PCM lifetime [17], [12]. In particular, PCM cdre used to support metadata for log-structuredyftems
tailored specifically for Flash-based devices: stitdsystems suffer from a large DRAM memory footprior
metadata and long mounting times, as the entire mgtdths to be read from Flash to reconstruct theeimory
metadata image upon mount. By separating the metéatathe data and maintaining the former on PCbthb
drawbacks are overcome, making scalable filesystanig/brid storage possible [17], [18].

PCM is clearly also suitable for filesystem dataeesly with short reads and writes, for the sameonra as above:
Whereas traditional filesystems employ a large bkizk and large 1/0O requests to amortize the costadssing the
HDD over a large amount of data, a PCM-aware filespsbnly needs to issue small requests. Most impoytdntl
departing from traditional filesystems that rely eithan write-ahead logging (journaling) or on copyerite
(shadow paging) techniques to guarantee consisten®CM-based filesystem can achieve consistency witho
writing metadata out of place. Instead, small, atorimeplace metadata updates can be used to only tdweeh t
modified blocks of a file tree, thereby avoiding tbopying of metadata that did not change. Such atopecations
to PCM can be implemented using hardware for 8-byteniatwrite support [12].

Instead of offering a filesystem interface to p&esit storage, PCM-equipped systems can provide aorgem
allocation interface to applications, such as a fplgrsistent heap where persistent objects can be eflbeaid

manipulated directly on PCM, using system calls simidanalloc() and free() to (de)allocate persistentnmey [14].
The advantage of this approach is that it elimintitesoverhead of the 1/0 stack and the filesystehilewallowing
applications to maintain their internal data reprgation persistently without the need to transfarito iserialized
formats, such as files. The disadvantage, of coigdbat current applications would have to be rdtemi losing the
backwards compatibility ensured by a file-based iatef For instance, an application upgrade wouldireda
clearly distinguish between data structures beingeitilin the new version (either unchanged or cordgand those
requiring re-initialization or removal. In any casige exchange of data between applications wouldvaypyequire
that the applications transform their data into stanftamtiats (like files). Thus, in the future, filesystémterfaces
will not disappear, but they very likely will be coraptented by persistent memory allocation interfacadasi to
those that exist for main memory.

Databases will profit from PCM in many respects: Dyée addressability of PCM presents many oppadigsior
databases to optimize the layout of data on persisterage. As only those records and attributesead that are
necessary to answer a query, the memory bandvédtieid more efficiently and the processors candwitd useful
data at a much higher rate, resulting in orders-gjnitade better throughput, as column-oriented stosyggnes
tailored specifically to read-optimized databases. (fog data warehousing) show [19]. Of course, biate systems
will need to identify which objects have to be stbom PCM and which on lower-performance media. daiabase
buffer management, the main memory buffering wibahave to be adapted to the cost metrics of PRMinstance,
it would make sense to cache PCM-resident data inl®RAly if such data is bound to be accessed multipies in
the near future [20]. Furthermore, PCM can also ¢elas a direct extension of the main-memory bpidet [21],
acting as a second-level cache for data that isifits as hot but does not fit into the main-memorifdsuypool. In
terms of database loggin@CM is particularly suitable as a synchronous datalmsto relieve the overhead of write-
ahead logging, which is one of the most critical bottt&aen transaction processing. Firstly, the logginthiecture
can be simplified by eliminating the need for DRAMYy buffers used for group commits to hide the digkrey.
Secondly, the performance can be improved throwgtebconcurrency, i.e., by allowing transactionsvtde small
log records independently of one another, instedthweing to synchronize to fill out DRAM log buffeirs the proper
order for consistency [22]. Finally, database dataciras will have to be adapted to the performancesaddrance
characteristics of PCM. For instance, dropping thaiireqnent of B-tree records being sorted on their key and
packed can significantly reduce the wear of PCM a$ agethe energy consumption of the system [23]. Sdree is
true for specifically tailoring hash-join algorithmsPCM [23].

6. System-level implications of PCM

This section first examines the system-level impacPGM on legacy storage systems, and then looks \al no
storage architectures. Traditionally, a large parthef storage capacity is provided by external HDDelastorage
systems. Block-level access is provided with a Stofaga Network (SAN), whereas shared access atlthéefiel is
provided via Network-Attached Storage (NAS). Sucheys employ sophisticated storage controllers withegted
or unprotected DRAM caches.

Although HDD storage still scales well in terms of @eipy, performance scaling of systems relies on asing the
number of HDDs or increasing the DRAM cache sizesTisichallenging because of the typical space ameipo
constraints in datacenters. The emerging use sht@mory as a DRAM cache extension and/or as stéoage tier
already mitigates this performance-scaling challelogsome extent. Given the significant performarsmalability

and endurance advantages of PCM, PCM will eventuallgreexternal legacy storage systems and complement o
replace Flash for caching and tiering purposes. Ageaware systems are capable of intelligently placnd
dynamically moving data across tiers, with cold diateost-efficient HDDs and hot data in high-performingM and
Flash memory.

To improve application performance, a recent tren imtroduce a new layer consisting of a clustedisfributed
read-only cache nodes between application serverdaatiase systems. Distributed caches can makepfficge of
the main memory available at each node, as forrinstaith memcached [24]. Such distributed cachez ofbject
caching based on simple in-memory key-value dataestty speed up interactive web applications by fiaduc
database load. Owing to the clustered architectuegingcis not limited by the DRAM density, but by thewer

consumption. PCM will enable the total size of suabhes to be increased, thus further reducing the doatthe
back-end systems and improving the energy effigieht addition, PCM persistency may be exploiteduim such
caches into persistent data stores, e.g., by usingcaeheDB [25].

To further improve application latency, a new storagethat extends the traditional SAN-based hieliaettstorage
directly into the servers is emerging. This new ¢ensists of distributed Direct Attached Storage #)Alustered in
a “share-nothing” architecture, i.e., one in whibk hodes do not share the directly attached stpratfeer, locality
properties are exploited to split data across nodesh Systems have already been introduced using Blesdd DAS
[26]. The use of PCM will enable an even bettergraéon of this new storage tier than is possible wittsh.

Beyond the techniques described above, novel apprsarh being pursued that aim at achieving a migttehlevel
of scalability, performance, and energy efficietlegn can be attained by systems that still evegtualy on HDDs.
Motivated by the observation that the total amodiRAM used by popular social networking sites equbtsua 75%
of the total size of their data, RAMCloud uses DRA primary storage by aggregating the main memafies
thousands of commodity servers and relies on rafitand backup to provide data reliability [27hi3 results in an
orders of magnitude improvement in terms of both W@ughput and access latency, albeit with a comparabl
increase in power consumption. Other approache&lasé memory for primary storage and thus havestd dith
the intricacies of Flash management, such as out-o&plaites and wear. To this end, a new Flash traasldyer
was introduced in [28], whereas a log-like dataests used in [29]. However, both solutions compéicdie overall
system design. In all of these three examplegr#msition to PCM for primary storage would substantiegiduce the
power consumption, increase capacity, and simpliydsign.

Further disruptions at the system level may resulnfroore subtle technology changes: Merging procesay
memory chips into a single chip reduces memory laténcyeases the memory bandwidth, and improves the energy
efficiency [30]. Nevertheless, this approach hadiregdimits because of the high power consumptibDRAM. In

the future, PCM combined with 3D-stacking technolegiéll allow a collection of processor and PCM ditesbe
mounted on a single chip. By bringing processorsthmgewith non-volatile storage, many intervening levef the
storage hierarchy can be eliminated (see Sectiom3)articular, so-called through-silicon vias caovide wide,
low-energy data paths between the processors andathestores. Equipped with network interfaces artsbard
connectors, a cluster of such tightly-integrated prsmmsand data stores will be particularly suitabtedfta-centric
computing. One such proposed architecture is Nareo§ddyi, in which PCM makes it possible to store alladin a

flat memory hierarchy that replaces traditional diski DRAM layers.

7. Conclusions and outlook

The character of enterprise and scientific workloadshifting from being compute-centric to being datatdge,
requiring low latency and high bandwidth in a dieeset of access patterns. These requirements aradwrsssed
with in-memory computing, i.e., by more main memtrst is directly accessible by processors. PCM éspitime
candidate to scale main memory beyond the DRAM. ddeption of PCM for persistent main memory hasaiert
implications on the software and hardware architectur

a) Synchronous writes to PCM can be used to supersadi¢idnal optimizations for disk systems. This allows
simplifications in existing implementations (e.glefsystems and persistency interfaces) and fosters t
emergence of transactional memory approaches. Augoh&ith hardware support, transactional memory on
PCM provides durability with significant performance bigee

b) The persistency of PCM requires measures to pragaihst unrecoverable system failures and consistency
violations: Firstly, references to and from datacures in non-volatile memory require additionaltpetion
on the software level. Secondly, procedures such ‘@ean reboot” must be explicitly tailored for PCM.
Thirdly, standardized data formats for persistent fata an essential part of the software architecture. Th
conversion from older formats becomes an integaet @f any upgrade procedure.

c)

If the content of persistent memory must be protectéith encryption, the advantage of the byte
addressability offered by PCM can no longer be fulpleited because of the cipher block modes usew. Th
can be addressed with hybrid DRAM-PCM memory aechitres.

When the typical dataset no longer fits into the nm@mory, storage subsystems are still indispenshbtbe light
of the increasing predominance of multi-processingrenments using hundreds of cores, request streantiset
storage subsystem tend to transform into random swgxaterns. Therefore, designers of future PCM-awtmage
subsystems will have to take the following into account:

a)

b)

d)

Using PCM as a write cache or as a log supportindaoepupdates will be necessary to alleviate the poor
performance and lifetime of Flash under randomesritVith PCM, in-place updates are supported, aven i
“logging” structures, thus eliminating the need tadenultiple locations before the original page can be
reconstructed.

Storing the controller- and filesystem metadata @MPwill reduce the access latency and enable high-
granularity mappings and statistics tracking. Becausiaata is more frequently updated than data, gtorin
metadata on PCM will also significantly reduce writepdification on Flash. As PCM is byte-addressable
and persistent, it is particularly suitable for hotflimetadata of storage systems that are often stmdd
accessed in the sizes of tens to hundreds of bytes.

To achieve the extremely low latency of PCM at the sydésml, it will be necessary to eliminate much of
the overhead caused by legacy code in the I/O sdtstack of operating systems, filesystems and dagah
e.g., by removing legacy I/0 schedulers and replaoicgjng structures with lock-free counterparts.

RAID controllers will have to be re-architected tapport the latency and throughput capabilities of PCM
based devices, e.g., by using specialized chipsaidisté¢ the general-purpose processors found in teday
RAID adapters.

The scalability, performance and endurance advan@fg@€M over other storage media, such as FlasiANDRand
disks, will increase its impact on the overall architexfor data-intensive systems. In summary:

a)

b)

c)

The share of PCM-based clusters in data-intensivdicappns and data centers will increase. In these
clusters, PCM may play a dual role as memory andgégrenabling scaling to high capacities with low
latencies. Directly-attached PCM in large clusters meyused as a distributed caching layer, speeding u
applications in a cost-efficient way.

Alternatively, PCM may be used as a dedicated g®ter to provide low latency and high performance.
Ultimately, this architecture leads to the collocatidrpmcessors with PCM for extremely high-throughput
computing systems at high parallelism.

In light of the proliferation of multi-core systems ath@ shortened distance between the CPU and the data
stored on PCM, future operating systems, filesysteand databases will need to scale very well to tens
hundreds of processing cores accessing the samsithadéaneously with the lowest possible latency.

References

Eleftheriou, E., Haas, R., Jelitto, J., Lantz, Mhd&ozidis, H. Trends in Storage Technologies. |EEia
Engineering Bulletin, 33(4), Dec. 2010.

Zhou, P., Zhao, B., Yang, J., and Zhang, Y. A Digaand Energy Efficient Main Memory Using Phase
Change Memory Technology. Proc. ISCA, 2009.

Qureshi, M. K., Karidis, J., Franceschini, M., Srasan, V., Lastras, L., and Abali, B. Enhancinigtiine and
Security of PCM-Based Main Memory with Start-Gapaieeveling. Proc. MICRO, 20009.

Qureshi, M. K., Srinivasa, V., and Rivers, J. A.cafable High Performance Main Memory System Using
Phase-Change Memory Technology. Proc. ISCA, 2009.

(1]
(2]
(3]
(4]

[5] Qureshi, M. K., Franceschini, M., and Lastras, Lmptoving Read Performance of Phase Change Memaaes v
Write Cancellation and Write Pausing. Proc. HPCALR0

[6] Lee, B, Ipek, E., Mutlu, O., and Burger, D. Architeg PCM as a Scalable DRAM Alternative. Proc. ISCA,
20009.

[71 Qureshi, M. K., Franceschini, M., Lastras, L., afdridis, J. P. Morphable Memory System: A Robust
Architecture for Exploiting Multi-Level Phase Charnlgemories. Proc. ISCA, 2010.

[8] Satyanarayanan, M., Mashburn, H. H., Kumar, P.,r8tda. C., and Kistler J. J. Lightweight Recoveeabl
Virtual Memory. ACM Transactions on Computer Systei@&l}, Feb. 1994,

[9] Biswas, R., and Ort, E. The Java Persistence ARISimpler Programming Model for Entity Persistence.
http://www.oracle.com/technetwork/articles/javaee/lil3F156.html May 2006.

[10] Herlihy, M., Moss, J., and Eliot, B. Transactionalefdory: Architectural Support for Lock-Free Data
Structures. Proc. ISCA, 1993.

[11] Mohan, C. Repeating History beyond ARIES. Proc. B, 0999.

[12] Condit, J., Nightingale, E. B., Frost, C., Ipek, IEeg, B., Burger D., and Coetzee, D. Better |/@tigh Byte-
Addressable, Persistent Memory. Proc. SOSP, 2009.

[13] Prabhakaran, V., Rodeheffer, T. L., and Zhou, Transactional Flash. Proc. OSDI, 2008.

[14] Coburn, J., Caulfield, A. M., Akel, A., Grupp, L. .MGupta, R. K., Jhala, R., and Swanson S. NV-Heaps
Making Persistent Objects Fast and Safe with NesttéBation, Non-Volatile Memories. Proc. ASPLOS, 2011

[15] Kim, J. K., Lee, H. G., Choi, S., and Bahng, K. A PRAM and NAND Flash Hybrid Architecture for High
Performance Embedded Storage Subsystems. Proc. EMS008.

[16] Caulfield, A., De, A., Cobur,n J., Mollov, T., GuptR,, and Swanson, S. Moneta: A High-Performance
Storage Array Architecture for Next-Generation, Néwlatile Memories. Proc. IEEE MICRO, 2010

[17] Jung, J., Won, Y., Kim, E., Shin, H., and Jeon, BRASH: Exploiting Storage Class Memory in HybrideFi
System for Hierarchical Storage. Proc. ACM TOCS,®201

[18] Park, Y., Lim, S., Lee, C., and Park, K. PFFS: dalsble Flash Memory File System for the Hybrid
Architecture of Phase Change RAM and NAND FlasbcPACM SAC, 2008

[19] Stonebraker, M., Abadi, D., Batkin, A., Chen, Xhetniack, M., Ferreira, M., Lau, E., Lin, A., MaddeS.,
O'Neil, E., O'Nell, P., Rasin, A., Tran, N., and Zdk, S. C-Store: A Column-Oriented DBMS. Proc. VLDB,
2005.

[20] Koltsidas, I., and Viglas, S. Flashing Up The Sgeraayer. Proc. VLDB, 2008.

[21] Bhattacharjee, B., Mustafa, C., Lang, C., Mihaila, &d Ross, K. Storage Class Memory Aware Data
Management. IEEE Data Engineering Bulletin, 33(4)4852010.

[22] Fang, R., Hsiao, H., He, B., Mohan, C., and Wang, Migh Performance Database Logging using Storage
Class Memory. Proc. ICDE, 2011.

[23] Chen, S., Gibbons, P., and Nath, S. Rethinking lizs@ Algorithms for Phase Change Memory. Proc. CIDR,
2011.

[24] Memcachedhttp://memcached.org/

[25] MemcacheDBhttp://memcachedb.org/

[26] Fitch, B. G., Rayshubskiy, A., Ward, T. J., Pitmdh, Metzler, B., Schick, H. J., Krill, B., Morjan,.Pand
Germain, R. S. Blue Gene Active Storage. Proc. HE(, 2010.

[27] Ousterhout, J., Agrawal, P., Erickson, D., KozyraKis, Leverich, J., Mazieres, D., Mitra, S., NarayanA.,
Rosenblum, M., Rumble, S. M., Stratmann, E., ands8tan, R. The Case for RAMClouds: Scalable High-
Performance Storage Entirely in DRAM. Proc. ACM SIS 2009.

[28] Caulfield, A. M., Grupp, L. M., and Swanson. S. @Gmr: An Improved Architecture for Data-Intensive
Applications. Proc. IEEE Micro, 2010.

[29] Andersen, D. G., Franklin, J., Kaminsky, M., Phhaigee, A., Tan, L., and Vasudevan. V. FAWN: A Fast
Array of Wimpy Nodes. Proc. SOSP, 2009.

[30] Patterson, D., Anderson, T., Cardwell, N., Fromm, keeton, K., Kozyrakis, C., Thomas, R., and YeliK.

A Case for Intelligent RAM: IRAM. Proc. IEEE Micro997.

[31] Ranganathan, P. From Microprocessors to Nanostðinking Data-Centric Systems. IEEE Computer,

44(1), 39-48, 2011.

