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ABSTRACT 

Emerging data-centric workloads necessitate systems with highly scalable storage components, not only in terms of 
capacity, but also in terms of performance and energy efficiency. These requirements, in combination with advances 
in Storage Class Memory (SCM) technologies, will drive the departure from traditional memory and storage 
architectures. The focus of this paper is on systems that employ Phase-Change Memory (PCM) to either complement 
or replace traditional media such, as HDDs, protected DRAM, and Flash. We study possible uses of PCM across the 
entire stack, and present an analysis of the implications this has for the various components, such as the main memory 
subsystem, storage subsystems, operating systems, filesystems and databases, as well as of its impact on the overall 
system architectures. Key problems introduced by the new medium are identified and solutions are outlined, which, 
we believe, will be very valuable for the designers of next-generation data-centric systems and applications. 

1. Introduction   
Newer workloads pose ever higher performance and/or capacity demands on main memory and storage, creating 
technology-scaling challenges and new possibilities for disruptions [1]. Whereas the main-memory Dynamic Random 
Access Memory (DRAM) technology may exhibit difficulties to scale down below 30 nm, the Hard Disk Drive 
(HDD) technology not only exhibits a substantial slow-down in areal-density growth, but also a continuing decrease 
in the number of IOPS (I/O operations per second) normalized to the storage capacity per platter or per device. 
Recently, NAND-Flash-based Solid-State Drives (SSDs) started to fill in the widening performance gap between 
processors and storage systems. However, scaling also has a detrimental impact on Flash, particularly with the more 
aggressive multi-level cell technology. Workloads that require fast access over increasingly large datasets therefore 
necessitate alternatives to these traditional technologies, with inevitable architectural implications at not only the 
memory and storage subsystem but also at the software and system levels. 

In this paper, we provide a holistic analysis of the implications the introduction of Phase-Change Memory (PCM) has 
for subsystems and at the system level. Section 2 looks at the issues arising when PCM replaces or is combined with 
existing DRAM main memory, and Section 3 focuses on the implications of persistency in this context. Then, Section 
4 delves into aspects of the storage subsystem level. Section 5 covers the software-level aspects in a broader sense, 
and specifically discusses how PCM will affect filesystem and database architectures. Finally, the system-level 
implications are addressed in Section 6, and conclusions are presented in Section 7. 

2. Traditional main-memory usage  
In terms of main memory, PCM, given its higher density and energy efficiency, has the potential to complement or 
replace DRAM provided that suitable solutions address its finite endurance, read/write latency penalty and 
asymmetry. A number of techniques have been developed to achieve write reduction, and hence increase the lifetime 
of PCM. Starting at the PCM circuit level itself, the shorter read latency can be exploited to eliminate redundant bit 
writes by first comparing the current value against the preceding bit value. Also, wear leveling can mitigate the 
address locality of workloads and help wear out cells evenly: wear-leveling techniques can be implemented in the 
PCM circuit itself to perform fine-granularity shifting within a line in a page, or at the memory controller to 
periodically swap larger memory segments containing hot and cold memory pages [2], or a moving gap can be used 
[3]. Combinations of such techniques have been shown to increase the lifetime by almost two orders of magnitude 



using a typical benchmarking program directly accessing PCM as main memory and assuming that the technology can 
sustain 108 rewrite cycles [2].  

In addition, the main memory can be made hybrid by placing a DRAM buffer in front of PCM to reduce the number 
of writes to PCM. The memory controller uses the DRAM buffer as a hardware cache to perform intelligent write 
scheduling to PCM as well as to write only the data in a cached page that has been modified. By combining such 
techniques the lifetime of hybrid architectures could be extended by a factor of three with only a small hardware 
overhead [4]. 

All the above write-reduction schemes also contribute to reducing access contention due to the read/write asymmetry 
of PCM. However, because the write latency is typically four times higher than the read latency, an incoming read 
request may still be unacceptably delayed by an on-going write operation to the same PCM memory bank. This is 
addressed by the preemption of write operations to expedite reads, as is done by adaptive write cancellation and Multi-
Level Cell (MLC) write pausing schemes [5]. The drawback of those schemes is that they increase the complexity of 
the memory controller because of the large queue of write requests. 

Given the widening speed gap between CPU and DRAM, PCM should not aggravate performance issues even if it 
enables density scaling. Hybrid schemes that can hide the performance penalty of PCM are of course one solution, but 
simulations have also shown that the use of narrower buffers in PCM and other architectural optimizations can lead to 
similar performance levels with Single-Level Cell (SLC) PCM as those of DRAM in terms of application delay [6]. 
Given that MLC PCM significantly increases the read and write latency while boosting capacity,  shifting the 
operation mode of cells between single-level and multi-level operation based on the actual memory capacity demand 
at runtime can achieve a dynamic trade-off between latency and density, but requires both hardware and OS support to 
dynamically adapt the memory capacity [7]. 

3. Persistent main-memory usage  
An even more disruptive characteristic than the density scaling is the persistency of PCM. High-performance access to 
persistent data can not only accelerate systems significantly (e.g., boot process, hibernation, and writing of application 
data and file-system check-pointing), but also render them more reliable. Enterprise systems already protect some of 
their DRAM memory content against power failures with protected memory based on battery-backed, Flash-backed, 
or disk-backed mechanisms. One approach is to let applications access a protected memory region through specific 
APIs to store their data structures [8],[9]. In case of power failure, applications reconstruct their state from those 
protected data structures, whereas the content in the unprotected region is lost. In a more comprehensive approach, not 
only application data, but the entire OS is located in protected memory so that upon a normal shutdown or a power 
failure, processor caches must be flushed and additional information (i.e., processor registers) must be written back 
into protected memory. This process is similar to hibernating using a disk. A special boot procedure then has to 
restore registers before normal operation can be resumed. However, similarly to a corrupted filesystem, where special 
off-line tools are required to regain a consistent state, starting such a system from its protected main memory cannot 
fix potential memory leaks, invalid pointers, or locking violations. In these cases, the protected main-memory content 
must be discarded, and a reboot from disk must be done, resulting in a potential data loss. Similarly, with a PCM-only 
main memory, the discard operation would require resetting some regions of the PCM. The advantage of a PCM-
based main memory is that, in contrast to traditional protected memory mechanisms, which only scale with the 
DRAM size, it does not have this limitation. 

A drawback of a persistent main memory is that typical optimizations of memory accesses from the processor may 
cause a reordering of a group of writes and thus leave the system in an inconsistent state if the system stops before all 
writes complete. Hence suitable solutions for updating non-volatile data structures are required to not only guarantee 
durability, i.e., ensuring that all writes reached persistent memory, but also consistency, in the sense that a group of 
write operations is performed atomically and that the ordering between certain writes is preserved. In systems without 
protected main memory, this has been solved by using synchronous writes or by committing grouped writes directly to 
a storage device together. Especially ungrouped synchronous writes to HDD are detrimental to system performance; 
this is not the case on PCM where small writes incur low latency. Therefore, PCM has the capability to accelerate 



system performance with synchronous writes independent of whether they are grouped or not. Many concepts that 
provide consistency exist, e.g., buffer cache in file systems, persistence interfaces such as the Java Persistence API [9] 
or RVM [8], databases, transactional memory [10], or persistent key value stores. All of them have been optimized to 
bring data into an appropriate format (e.g., inodes, files, or serialized objects) for disk-based storage systems and to 
schedule I/Os according to the characteristics of block-based disk storage. For all these concepts, the means to 
guarantee consistency are log structures or copy-on-write operations [11]. These concepts may also be used with 
persistent main memory. For instance, fine-grained updates with copy-on-write have been proposed in BPFS [12] at 
the cost of additional hardware primitives for atomic updates. BPFS shows how an interface built on top of storage 
devices can be re-implemented on persistent main memory. 

Consistency guarantees in main memory have also been addressed using transactional memory (TM) [10]. As 
committing transactions to persistent storage can be delayed or not done at all, TM only provides persistency as long 
as a clean shutdown can be guaranteed. A transaction keeps modified data in a log-like dedicated write set until it is 
committed successfully and changes are made visible. Otherwise, the transaction is aborted by restoring the initial 
state. The programmer can simply mark the code section to be executed atomically accordingly. The combination of 
PCM and a TM would augment the system durability ideally. In [13] it was shown that such a combination can be 
achieved with limited overhead on top of Flash.  

Another challenge arises from combining volatile and persistent main memory: References to and from data structures 
in non-volatile memory have to be handled with care. Any reference in volatile memory to an object in non-volatile 
memory might cause a memory leak after a power failure. Similarly, data loss can result from references in non-
volatile data structures to objects in volatile memory. Even references between two distinct non-volatile memory 
regions are critical because one of the regions might not be accessible after a failure. Although current compilers do 
not yet make such checks, libraries to perform such checks at run time exist [14]. 

Persistency may require the use of encryption of main memory. Storage systems use block cipher modes to encrypt 
sectors using a single key, and tweakable modes even allow encryption of large numbers of blocks with the same key. 
Byte-addressable persistent memory conflicts with the fixed sector sizes of those encryption modes: Although the 
encryption block size is rather small (up to 32 bytes), the block cipher mode chains all blocks in a sector so that an 
entire sector must be decrypted and re-encrypted even if only a single word has been modified. This can be addressed 
by a hybrid DRAM-PCM memory in which DRAM is used as a byte-addressable cache in front of page-based PCM. 

4. Storage subsystem usage  
Existing storage architectures cannot fully benefit from the low-latency and byte-addressability characteristics of 
PCM. The high latency of the I/O bus and the use of traditional block-based interfaces prevent the execution of reads 
and writes at word granularity and low latency. Even high-performance I/O buses, such as PCI-e, are not suitable as 
they are primarily designed for bulk data transfers [12]. As discussed above, exploiting the full benefits of PCM 
requires that the CPU can access it directly with common load and store commands over the memory bus. 

Nevertheless, attaching persistent low-latency memories to the I/O bus is attractive for at least three reasons. Firstly, 
the latency and endurance characteristics of PCM are orders of magnitude better than those of any other type of non-
volatile memory currently in use (with the exception of battery-backed DRAM) and can still be leveraged despite the 
performance limitations of the I/O bus. Secondly, integrating PCM on the memory bus will require extensive 
hardware and software changes, with the risk of incurring more subtle performance bottlenecks, such as lock 
contention in kernel data structures associated with serving I/O requests. Therefore, leveraging PCM in the storage 
hierarchy is a more immediate path towards supporting increasingly demanding workloads. Thirdly, similarly to 
HDDs, aggregating pools of PCM storage in network-attached storage controllers has very desirable reliability, 
availability, serviceability and fault-tolerance benefits, which will drive the adoption of storage-attached PCM in 
enterprise environments. 

Storage architectures increasingly leverage heterogeneous technologies such as Flash, HDDs, and tape to sustain the 
combined performance and capacity growth, similarly to multi-level and hybrid memory architectures. Given the 



significantly higher endurance and performance of PCM as compared to Flash, the shift towards PCM will be 
determined by the availability of high-density and low-cost chips. Until sufficient such chips are available, storage 
subsystems can already make use of hybrid devices: Flash memory can be used as the permanent storage for data, 
whereas PCM is used to store logical-to-physical address mappings and other metadata. For these purposes, the byte 
addressability of PCM may even be an additional advantage [15]. The PCM portion of the device can also be used to 
absorb writes, either as a low-latency, update-in-place write cache in front of the Flash memory or for logging small 
updates to Flash pages, effectively reducing the write amplification in Flash. As a result, the lifetime of the Flash 
device is extended because most writes are being absorbed in PCM. Of course, this requires careful design to ensure 
that in such a device PCM will not wear out faster than Flash does.  

5. Software-level usage 
The I/O software stack of current systems, including operating system I/O schedulers, device drivers, filesystems and 
database storage engines, has been designed and optimized to accommodate the millisecond-range seek times of 
HDDs. A performance improvement of almost two orders of magnitude over HDDs can be achieved thanks to the byte 
addressability of PCM; however, new bottlenecks will be incurred because of inefficiencies and overheads in the 
current stack that were previously hidden by the high latency of HDDs [16]. For instance, about 20,000 instructions 
are required to issue and complete a typical 4 kB I/O request in Linux. When using a PCM-based storage device 
instead of HDDs, this overhead accounts for more than 60% of the total latency per request. A significant amount of 
the latency can be saved by completely bypassing the I/O scheduler of the OS and by removing certain locking 
structures in the kernel and re-implementing others as lock-free data structures, so that many threads can serve 
interrupts in parallel. Of course, a system could completely avoid relying on interrupts for I/O by allowing threads to 
spin in busy-loop instead of sleeping, thus saving the latency of context switching. Although this technique can reduce 
latency, it entails a significant increase in CPU utilization, and thus may only be suitable for very small requests [16]. 

The main mechanisms to organize and store data persistently are filesystems and databases, operating directly on top 
of the I/O stack. Similarly to hybrid memory and storage subsystems, filesystems can take direct advantage of PCM, 
possibly in combination with Flash and HDDs, either for their metadata or the data itself. 

PCM will be particularly suitable for filesystem metadata for three reasons. Firstly, accesses to filesystem metadata 
typically follow random-like patterns, and with PCM the latency of random accesses for both reads and writes is 
lower than with either Flash or HDDs. Secondly, the byte addressability of PCM allows metadata updates at word 
granularity, resulting in less bandwidth consumption and fewer writes, provided a suitable interface is used instead of 
the block-based interface (typically employing 512 B or 4 kB blocks). Thirdly, the non-volatility of PCM ensures that 
modifications to metadata are durable once the CPU cache has been flushed. Thereby, filesystem metadata does not 
need to occupy precious DRAM buffers, even though parts of it may be cached in-memory for better performance and 
longer PCM lifetime [17], [12]. In particular, PCM can be used to support metadata for log-structured filesystems 
tailored specifically for Flash-based devices: such filesystems suffer from a large DRAM memory footprint for 
metadata and long mounting times, as the entire metadata has to be read from Flash to reconstruct the in-memory 
metadata image upon mount. By separating the metadata from the data and maintaining the former on PCM, both 
drawbacks are overcome, making scalable filesystems on hybrid storage possible [17], [18]. 

PCM is clearly also suitable for filesystem data, especially with short reads and writes, for the same reasons as above: 
Whereas traditional filesystems employ a large block size and large I/O requests to amortize the cost of accessing the 
HDD over a large amount of data, a PCM-aware filesystem only needs to issue small requests. Most importantly, by 
departing from traditional filesystems that rely either on write-ahead logging (journaling) or on copy-on-write 
(shadow paging) techniques to guarantee consistency, a PCM-based filesystem can achieve consistency without 
writing metadata out of place. Instead, small, atomic, in-place metadata updates can be used to only touch the 
modified blocks of a file tree, thereby avoiding the copying of metadata that did not change. Such atomic operations 
to PCM can be implemented using hardware for 8-byte atomic write support [12]. 

Instead of offering a filesystem interface to persistent storage, PCM-equipped systems can provide a memory 
allocation interface to applications, such as a fully persistent heap where persistent objects can be allocated and 



manipulated directly on PCM, using system calls similar to malloc() and free() to (de)allocate persistent memory [14]. 
The advantage of this approach is that it eliminates the overhead of the I/O stack and the filesystem, while allowing 
applications to maintain their internal data representation persistently without the need to transform it to serialized 
formats, such as files. The disadvantage, of course, is that current applications would have to be re-written, losing the 
backwards compatibility ensured by a file-based interface. For instance, an application upgrade would require to 
clearly distinguish between data structures being utilized in the new version (either unchanged or converted) and those 
requiring re-initialization or removal. In any case, the exchange of data between applications would anyway require 
that the applications transform their data into standard formats (like files). Thus, in the future, filesystem interfaces 
will not disappear, but they very likely will be complemented by persistent memory allocation interfaces similar to 
those that exist for main memory. 

Databases will profit from PCM in many respects: The byte addressability of PCM presents many opportunities for 
databases to optimize the layout of data on persistent storage. As only those records and attributes are read that are 
necessary to answer a query, the memory bandwidth is used more efficiently and the processors can be fed with useful 
data at a much higher rate, resulting in orders-of-magnitude better throughput, as column-oriented storage engines 
tailored specifically to read-optimized databases (e.g., for data warehousing) show [19]. Of course, database systems 
will need to identify which objects have to be stored on PCM and which on lower-performance media. For database 
buffer management, the main memory buffering will also have to be adapted to the cost metrics of PCM. For instance, 
it would make sense to cache PCM-resident data in DRAM only if such data is bound to be accessed multiple times in 
the near future [20]. Furthermore, PCM can also be used as a direct extension of the main-memory buffer pool [21], 
acting as a second-level cache for data that is classified as hot but does not fit into the main-memory buffer pool. In 
terms of database logging, PCM is particularly suitable as a synchronous database log to relieve the overhead of write-
ahead logging, which is one of the most critical bottlenecks in transaction processing. Firstly, the logging architecture 
can be simplified by eliminating the need for DRAM log buffers used for group commits to hide the disk latency. 
Secondly, the performance can be improved through better concurrency, i.e., by allowing transactions to write small 
log records independently of one another, instead of having to synchronize to fill out DRAM log buffers in the proper 
order for consistency [22]. Finally, database data structures will have to be adapted to the performance and endurance 
characteristics of PCM. For instance, dropping the requirement of B+-tree records being sorted on their key and 
packed can significantly reduce the wear of PCM as well as the energy consumption of the system [23]. The same is 
true for specifically tailoring hash-join algorithms to PCM [23]. 

6. System-level implications of PCM 
This section first examines the system-level impact of PCM on legacy storage systems, and then looks at novel 
storage architectures. Traditionally, a large part of the storage capacity is provided by external HDD-based storage 
systems. Block-level access is provided with a Storage Area Network (SAN), whereas shared access at the file level is 
provided via Network-Attached Storage (NAS). Such systems employ sophisticated storage controllers with protected 
or unprotected DRAM caches. 

Although HDD storage still scales well in terms of capacity, performance scaling of systems relies on increasing the 
number of HDDs or increasing the DRAM cache size. This is challenging because of the typical space and power 
constraints in datacenters. The emerging use of Flash memory as a DRAM cache extension and/or as a top storage tier 
already mitigates this performance-scaling challenge to some extent. Given the significant performance, scalability 
and endurance advantages of PCM, PCM will eventually enter external legacy storage systems and complement or 
replace Flash for caching and tiering purposes. Tiering-aware systems are capable of intelligently placing and 
dynamically moving data across tiers, with cold data in cost-efficient HDDs and hot data in high-performing PCM and 
Flash memory. 

To improve application performance, a recent trend is to introduce a new layer consisting of a cluster of distributed 
read-only cache nodes between application servers and database systems. Distributed caches can make efficient use of 
the main memory available at each node, as for instance with memcached [24]. Such distributed caches offer object 
caching based on simple in-memory key-value data stores to speed up interactive web applications by reducing 
database load. Owing to the clustered architecture, scaling is not limited by the DRAM density, but by the power 



consumption. PCM will enable the total size of such caches to be increased, thus further reducing the load on the 
back-end systems and improving the energy efficiency. In addition, PCM persistency may be exploited to turn such 
caches into persistent data stores, e.g., by using memcacheDB [25]. 

To further improve application latency, a new storage tier that extends the traditional SAN-based hierarchical storage 
directly into the servers is emerging. This new tier consists of distributed Direct Attached Storage (DAS) clustered in 
a “share-nothing” architecture, i.e., one in which the nodes do not share the directly attached storage; rather, locality 
properties are exploited to split data across nodes. Such systems have already been introduced using Flash-based DAS 
[26]. The use of PCM will enable an even better integration of this new storage tier than is possible with Flash. 

Beyond the techniques described above, novel approaches are being pursued that aim at achieving a much higher level 
of scalability, performance, and energy efficiency than can be attained by systems that still eventually rely on HDDs. 
Motivated by the observation that the total amount of RAM used by popular social networking sites equals about 75% 
of the total size of their data, RAMCloud uses DRAM as primary storage by aggregating the main memories of 
thousands of commodity servers and relies on replication and backup to provide data reliability [27]. This results in an 
orders of magnitude improvement in terms of both I/O throughput and access latency, albeit with a comparable 
increase in power consumption. Other approaches use Flash memory for primary storage and thus have to deal with 
the intricacies of Flash management, such as out-of-place writes and wear. To this end, a new Flash translation layer 
was introduced in [28], whereas a log-like data store is used in [29]. However, both solutions complicate the overall 
system design. In all of these three examples, the transition to PCM for primary storage would substantially reduce the 
power consumption, increase capacity, and simplify the design. 

Further disruptions at the system level may result from more subtle technology changes: Merging processing and 
memory chips into a single chip reduces memory latency, increases the memory bandwidth, and improves the energy 
efficiency [30]. Nevertheless, this approach has scaling limits because of the high power consumption of DRAM. In 
the future, PCM combined with 3D-stacking technologies will allow a collection of processor and PCM dies to be 
mounted on a single chip. By bringing processors together with non-volatile storage, many intervening levels of the 
storage hierarchy can be eliminated (see Section 3). In particular, so-called through-silicon vias can provide wide, 
low-energy data paths between the processors and the data stores. Equipped with network interfaces and onboard 
connectors, a cluster of such tightly-integrated processors and data stores will be particularly suitable for data-centric 
computing. One such proposed architecture is Nanostore [31], in which PCM makes it possible to store all data in a 
flat memory hierarchy that replaces traditional disk and DRAM layers. 

7. Conclusions and outlook 
 
The character of enterprise and scientific workloads is shifting from being compute-centric to being data-centric, 
requiring low latency and high bandwidth in a diverse set of access patterns. These requirements are best addressed 
with in-memory computing, i.e., by more main memory that is directly accessible by processors. PCM is the prime 
candidate to scale main memory beyond the DRAM. The adoption of PCM for persistent main memory has certain 
implications on the software and hardware architecture: 

a) Synchronous writes to PCM can be used to supersede traditional optimizations for disk systems. This allows 
simplifications in existing implementations (e.g., file systems and persistency interfaces) and fosters the 
emergence of transactional memory approaches. Augmented with hardware support, transactional memory on 
PCM provides durability with significant performance benefits. 

b) The persistency of PCM requires measures to protect against unrecoverable system failures and consistency 
violations: Firstly, references to and from data structures in non-volatile memory require additional protection 
on the software level. Secondly, procedures such as a “clean reboot” must be explicitly tailored for PCM. 
Thirdly, standardized data formats for persistent data form an essential part of the software architecture. The 
conversion from older formats becomes an integral part of any upgrade procedure. 



c) If the content of persistent memory must be protected with encryption, the advantage of the byte 
addressability offered by PCM can no longer be fully exploited because of the cipher block modes used. This 
can be addressed with hybrid DRAM-PCM memory architectures. 

When the typical dataset no longer fits into the main memory, storage subsystems are still indispensable. In the light 
of the increasing predominance of multi-processing environments using hundreds of cores, request streams to the 
storage subsystem tend to transform into random access patterns. Therefore, designers of future PCM-aware storage 
subsystems will have to take the following into account: 

a) Using PCM as a write cache or as a log supporting in-place updates will be necessary to alleviate the poor 
performance and lifetime of Flash under random writes. With PCM, in-place updates are supported, even in 
“logging” structures, thus eliminating the need to read multiple locations before the original page can be 
reconstructed.  

b) Storing the controller- and filesystem metadata on PCM will reduce the access latency and enable high-
granularity mappings and statistics tracking. Because metadata is more frequently updated than data, storing 
metadata on PCM will also significantly reduce write amplification on Flash. As PCM is byte-addressable 
and persistent, it is particularly suitable for holding metadata of storage systems that are often stored and 
accessed in the sizes of tens to hundreds of bytes. 

c) To achieve the extremely low latency of PCM at the system level, it will be necessary to eliminate much of 
the overhead caused by legacy code in the I/O software stack of operating systems, filesystems and databases, 
e.g., by removing legacy I/O schedulers and replacing locking structures with lock-free counterparts. 

d) RAID controllers will have to be re-architected to support the latency and throughput capabilities of PCM-
based devices, e.g., by using specialized chips instead of the general-purpose processors found in today’s 
RAID adapters. 

The scalability, performance and endurance advantages of PCM over other storage media, such as Flash, DRAM, and 
disks, will increase its impact on the overall architecture for data-intensive systems. In summary: 

a) The share of PCM-based clusters in data-intensive applications and data centers will increase. In these 
clusters, PCM may play a dual role as memory and storage, enabling scaling to high capacities with low 
latencies. Directly-attached PCM in large clusters may be used as a distributed caching layer, speeding up 
applications in a cost-efficient way. 

b) Alternatively, PCM may be used as a dedicated storage tier to provide low latency and high performance. 
Ultimately, this architecture leads to the collocation of processors with PCM for extremely high-throughput 
computing systems at high parallelism. 

c) In light of the proliferation of multi-core systems and the shortened distance between the CPU and the data 
stored on PCM, future operating systems, filesystems, and databases will need to scale very well to tens or 
hundreds of processing cores accessing the same data simultaneously with the lowest possible latency. 
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