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1 INTRODUCTION

Abstract

In this paper, we present five case studies of ad-
vanced networking functions and how a network
processor (NP) can provide high-performance and
flexible support for each of them. We first re-
view the basic NP system architectures, and de-
scribe in more detail the IBM PowerNP archi-
tecture from a data plane as well as from a con-
trol plane point of view. We introduce models
for the programmer’s views of NPs that facilitate
a global understanding of NP software program-
ming. Then, for each case study, we present re-
sults from prototypes as well as general consider-
ations that also apply to a wider range of system
architectures. Namely, we investigate the suit-
ability of NPs for quality-of-service (active queue
management and traffic engineering), header pro-
cessing (GPRS tunneling protocol), intelligent
forwarding (load-balancing without flow disrup-
tion), payload processing (active networks code
interpretation and just-in-time compilation), and
protocol stack termination (SCTP). Finally, we
summarize the key features required by each case
study, and make concluding remarks regarding
the future of NPs.

1 Introduction

The advent of network processors was driven by
an increasing demand for high throughput and
flexibility in packet routers. As a first step in
the evolution from software-based routers to net-
work processors (see Figure 1), the bus connect-
ing network interface cards with the central con-
trol processor (Control Point, CP) was replaced
by a switch fabric. As demand grew for even
greater bandwidth, network interface cards were
replaced by Application-Specific Integrated Cir-
cuits (ASICs), meaning that packets no longer
had to be sent to the CP for forwarding. ASIC-
based routers, however, turned out to be not as
flexible as necessary in the fast and diverse net-

Figure 1: The advent of network processors.
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2 NETWORK PROCESSOR ARCHITECTURE

work equipment market. Also, hardware devel-
opment cycles tended to be too slow to accomo-
date the continuous demand for new features and
support for additional protocols. The need for
adaptability, differentiation, and short time-to-
market brought about the idea of using Applica-
tion Specific Instruction-set Processors (ASIPs).
These so-called Network Processors (NPs) can
be programmed easily and quickly according to
specific products and deployment needs. Such a
set of Application Programming Interfaces (APIs)
and protocols are currently being standardized
by bodies such as the Internet Engineering Task
Force (IETF) ForCES [1] working group and the
Network Processor Forum [2]. This finally en-
ables users to easily take advantage of the full
NP capabilities: the powerful combination of per-
formance and flexibility that allows the efficient
development of advanced networking functions.

Today, a wide variety of NPs exists, each pro-
viding a different combination of flexibility, price,
and performance [3, 4]. Despite this variety, NPs
share many features, such as the capability to
simplify and accelerate the development of ad-
vanced networking functions. Even though this
paper will focus on our experience with the IBM
PowerNP [5] network processor, it provides in-
sight into a much wider selection of existing and
upcoming products, as the concepts discussed ap-
ply to most other NPs as well.

This paper describes our experience during the
design and implementation of a wide selection
of networking features. It provides insight into
many of the enabling factors we found necessary
during the implementation of functions ranging
from currently widespread features such as header
processing and Quality-of-Service (QoS) enforce-
ment to traffic-engineered packet processing. Fur-
thermore, we worked on functions that are less
widely considered for use in NPs, such as code
compilation, intelligent forwarding, and protocol
termination. We are thus able to explain, based
on our first-hand experience, how NPs simplify
and help accelerate the development of these func-

tions. This paper discusses our insight gained
from this broad spectrum of designs and describes
the lessons learned.

The paper is structured as follows. Section 2
presents a small taxonomy of NP architectures
and describes an example of an NP architecture in
sufficient detail for the following five case studies.
Section 3 states the seven goals of QoS and ex-
plains how they can be achieved by active queue
management and traffic engineering. In Section
4, we present our experience implementing the
GPRS Tunneling Protocol used for mobile Inter-
net access. Section 5 introduces advanced server
load balancing techniques and how they can be
implemented efficiently by taking advantage of
NP-specific functionality. Section 6 presents how
just-in-time (JIT) compilation of active network-
ing code can be implemented in NPs and how
this helps performance. The last case study is
presented in Section 7 and describes experiences
gained from the implementation of the Stream
Control Transport Protocol, which is expected to
be widely adopted over the next few years for di-
verse applications. In Section 8, we conclude by
summarizing and comparing the individual fea-
tures which were major enabling factors for each
of the case studies.

2 Network Processor
Architecture

The challenge in NP design is to provide fast and
flexible processing capabilities that enable a vari-
ety of functions on the data path yet keep the
simplicity of programming similar to that of a
General-Purpose Processor (GPP). The NP sys-
tem architecture plays a significant role in this re-
spect: such architectures are primarily designed
according to a serial model (or pipeline) or a par-
allel model, as shown in Fig. 2 [6]. Emulating the
other model is usually possible but can lead to
degraded performance.

In the parallel model, each thread in an NP
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2 NETWORK PROCESSOR ARCHITECTURE

Figure 2: NP concurrency models

core receives a different packet and executes the
entire data-path code for this packet. In the se-
rial model, each NP core receives each packet and
executes a different portion of the data-path code
in a thread.

From a programming point of view, the serial
model requires that the code be partioned such
that the work is evenly distributed, as the per-
formance of the NP equals that of its most heav-
ily loaded NP core. In the parallel model, given
that the same code can be performed by any NP
Core and packets are assigned to the next avail-
able thread in any NP Core, the work is inherently
evenly distributed. The Intel IXP [7] architecture
is designed primarily on a serial model, whereas
the IBM PowerNP [8] is designed on a parallel
model. For realistic, changing traffic mixes, the
serial model would require a dynamic repartition-
ing of the code to maintain performance, unlike
the parallel model for which no partitioning takes
place.

Figure 3 describes the NP core programmer’s
view of the PowerNP that can handle up to four
1 Gbps ports. It consists of 16 NP cores or pico-
processors that are scaled-down RISC processors
running at 133 MHz, with a PowerPC-resembling
instruction set. Each picoprocessor supports two
threads, so there are up to 16 threads executing si-

multaneously. Multithreading keeps a picoproces-
sor busy, for instance when a thread is waiting for
coprocessors results. A thread entirely processes
a packet, i.e., threads are in run-to-completion
mode.

To accelerate common tasks compared to ex-
ecuting them in picocode, eight coprocessors
(shown with ellipses in Fig. 3) are integrated to
perform asynchronous functions such as longest-
prefix lookup, full-match lookup, packet clas-
sification, hashing (all done by the two Tree
Search Engine (TSE) coprocessors), data copy-
ing, checksum computation, counter manage-
ment, semaphores, and policing, and packet mem-
ory access. The TSEs also provide access to the
control memory store, which is composed of inter-
nal and external memories of different widths and
access times. A number of hardware assists are
also available that accelerate tasks such as frame
alteration or header parsing.

Packet processing is divided into two stages:
ingress and egress. Ingress refers to the data-flow
from the link towards the switch interface, and
egress is the opposite. The same threads can per-
form processing at ingress or egress, thereby au-
tomatically balancing the processing power where
needed. Along with the packet, additional con-
text information can be transported from ingress
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3 QOS PROVISIONING

Figure 3: Programmer’s view of the picoprocessors in PowerNP.

to egress, such as the output port identifier of the
egress NP obtained by the IP forwarding lookup
previously executed on the ingress NP. Note that
the ingress and egress NP can be the same.

NPs and CPs do not map strictly to data plane
and control plane. In fact, data-plane functions
can be very well executed partly by the NP, partly
by the CP: in order to optimize NP instruction
memory usage, non-performance critical packet
processing tasks can be deferred to the CP. Sim-
ilarly, control path functions can be off-loaded
from the CP to the NP if this results in perfor-
mance gains, as illustrated in the following sec-
tions.

Available functions programmed in picocode in
the NP as well as the rest of the NP hardware
are driven by higher-level APIs from the CP. The
communication between the two takes place using
control messages processed by a special thread in
the NP. These CP APIs control logical compo-
nents that are represented by rounded rectangles
in the ingress and egress data paths in Fig. 4.

3 QoS Provisioning

The drivers of the Internet are e-mail, web surf-
ing, and bulk data transfer. All of these are
based on a common IP forwarding service re-
ferred to as Best Effort (BE). With the con-
vergence of telephony and data networks, in-
creased Internet utility will next be engendered
by QoS in IP networks. Needed is an optimal
balance of possible approaches, roughly choos-
ing between macromanagement (one-size-fits-all
over-provisioned BE service) and micromanage-
ment (circuit-switched telephony). We assume a
QoS model in which traffic can either be BE or in
some Premium class.

The general requirements placed on an IP
router to enable an improved level of QoS over
BE are the following.

1. Despite any physically possible level of data
congestion, realtime Premium traffic such
as IP Voice that arrives at a rate under
its contractual bandwidth limit must not be
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Figure 4: Programmer’s view of the PowerNP from the CP APIs.

dropped or unduly delayed.

2. Non-realtime Premium traffic, that is, Pre-
mium data, that conforms to its bandwidth
guarantees should not be dropped and its
queuing delay must be short regardless of
congestion by BE traffic.

3. During steady congestion conditions, all
queues should be low, ensuring low queu-
ing latency for all traffic. Exceptional bursts
should fill the buffer, however. There is no
excuse for high queuing latency during pro-
longed episodes of relatively steady conges-
tion.

4. Utilization should be high, that is, if excess
bandwidth remains after Premium traffic has

been served, then it should all or almost all
go to BE.

5. Bandwidth allocation should be fair and pre-
dictable.

6. As congesting conditions change, the re-
sponse of the NP should be fast convergence
to a new equilibrium that includes the above
five requirements.

7. Last but of highest importance, all of the
above should be automatic and easy to un-
derstand and administer.

Typically, up to a certain offered load, latency
and loss are minimal and nearly constant, and
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3 QOS PROVISIONING 3.1 Active Queue Management

then increase abruptly, i.e., the onset of conges-
tion. Subtleties include finite packet life, finite
storage, traffic value and precedence, and unpre-
dictable duration of bursts. An active queue man-
agement system addresses these issues in routers
by actively dropping packets before queues over-
flow. The next subsection describes the imple-
mentation of an active queue management sys-
tem for enforcing QoS on an NP. It shows that
the programmability of NPs allows one to imple-
ment active queue management systems without
sacrifying performance.

3.1 Active Queue Management

An implementation of an active queue manage-
ment system for enforcing QoS guarantees can
make use of the following NP hardware support:

• Hardware-supported flow control is invoked
when a packet is enqueued in ingress and
egress. The transmit probabilities used for
flow control are taken from a table stored in
fast access memory, i.e., the Transmit Prob-
ability table.

• The key to index into the transmit probabil-
ity table is composed of packet header bits
(e.g. IETF DiffServ code point). The access
to these header bits is supported by a header
parser hardware-assist.

• Furthermore, detailed flow accounting infor-
mation about individual offered loads is pro-
vided via hardware counters. Such counters
as well as queue level indicators and queue
depletion indicators at various locations in a
NP can be used to update the transmit prob-
ability memory (e.g. ingress general queue,
ingress target NP-queue, egress flow queue,
egress port queue).

Traditional active queue management systems
use general queue levels to determine transmit
probabilities. However, such an approach is not

feasible for high-speed routers with significantly
varying offered loads [9].

The BAT active queue management system de-
veloped as a standard feature for the PowerNP
allows Premium traffic to be organized at each
bottleneck in the NP into flow control pipes (see
Fig. 4) of different kinds [10]. A pipe is a lo-
cal (per bottleneck) aggregation of traffic in one
class. In our view, the simplest way to pro-
vide useful QoS is for each pipe to have an ag-
gregate minimum bandwidth guarantee min and
an aggregate bandwidth maximum max. Hence
0 ≤ min ≤ max. If multiple minimum band-
width guarantees are represented by constituent
flows in a pipe, then these must be summed to
achieve a pipe minimum. As network end-to-end
paths with guarantees are added or deleted, en-
suring the guarantees of the minimums at each
NP in the network is the complex yet hidden work
of network control, as described in the next sub-
section.

The implemented active queue management
system uses a modest amount of control theory
to adapt transmit probabilities to current offered
loads. A signal is declared that defines the ex-
istence of excess bandwidth. This signal can
use flow measurements, queue occupancy, rate of
change of queue occupancy, or other factors. If
there is excess bandwidth, then flows that are not
already at their max s are allowed to increase lin-
early. Otherwise, the rates allocated to flows not
already below their mins must decrease exponen-
tially.

For example, let us suppose four strict-priority
flows in egress are all destined to the same 100
Mbps target port as shown in Table 1. All band-
width units are in Mbps. If the four flows of-
fer rates of 15, 15, 50, and 100 (so sum = 180),
then the correct allocation should be: all Flow0,
Flow1, and Flow2 traffic should be transmitted,
and of Flow3 one fifth of the packets should be
transmitted (packets selected randomly).

Furthermore, the above allocation should be
reached quickly and with low queue occupancy.
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Table 1: Example of flows for bandwidth allocation.

Flow Label Type Minimum Maximum Priority (strict)

Flow0 realtime 10 30 0 (highest)
Flow1 non-realtime 20 40 1
Flow2 non-realtime 0 100 2
Flow3 non-realtime 0 100 3 (lowest)

We emphasize the above requirements 1–3: queu-
ing latency during steady congestion is low. This
is the latency packets endure while awaiting pro-
cessing. For example, suppose 101 Mbps of traffic
is forwarded to one 100 Mbps target port and the
egress data store is 128 Mb. Suppose the flow
control were conventional taildrop, that is, drop
arriving packets only if the queue occupancy be-
comes full. It follows that steady congestion of
101 Mbps would fill the egress data store to the
top and cause unacceptable queuing latency of
1.28 s. At the same time, setting a low tail-
drop threshold could cause unacceptable shaving
of bursts.

The control loop based on control theory ad-
dresses also the remaining requirements 4–7. The
feedback signal can be tuned to achieve high uti-
lization, fast convergence, fairness, and adminis-
trative simplicity [10]. The latter advantage is
by virtue of the fact that the active queue man-
agement system is configured with minimum and
maximum flow rates rather than queue levels.

There are virtually no costs for implement-
ing the active queue management system in the
data plane of the PowerNP because the header
parser hardware-assist and hardware flow control
support can be configured according to the new
scheme. The implementation costs in the con-
trol plane are about 300 cycles to update a single
transmit probability value. This update is trig-
gered in fixed time intervals for each pipe at each
output port. These costs cover line-speed for-
warding and normal control operation. It was
possible to make this advanced networking func-
tion swiftly operational as a standard feature on

the PowerNP which demonstrates the flexibility
of NPs.

3.2 Traffic Engineering Reference
Platform (TERP)

In this section, we highlight how the NP is used
in the context of Traffic Engineering (TE), both
from the data plane and control plane points of
view. Our implementation of TE relies on RSVP-
TE to set up MPLS paths (or LSP, for Label-
Switched Path) through the network and on Diff-
Serv to provide QoS. An OSPF-routing mecha-
nism with specific TE extensions is used to col-
lect QoS-usage information throughout the net-
work. Our own Route Server component com-
putes paths on request from RSVP. TE permits
ISPs (Internet Service Providers) to start offer-
ing value-added commercial-grade services. Each
MPLS node is composed of one or more NPs, in-
terconnected with a swtiching fabric and attached
to a CP: these NPs and the CP together act as a
single MPLS node.

In the data plane, TE nodes perform traffic
classification, policing, shaping, marking, drop-
ping, and forwarding. The logical components de-
scribed in Fig. 4 are configured from the CP by a
Label-and-Resource Manager process to perform
accordingly: Ingress MPLS nodes perform traf-
fic classification, policing, and DiffServ marking,
whereas transit nodes perform MPLS forward-
ing (MPLS label replacement) and egress MPLS
nodes perform IP forwarding. All nodes can be
configured to use WRED or BAT AQM to per-
form bandwidth allocation.
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3 QOS PROVISIONING 3.2 Traffic Engineering Reference Platform (TERP)

Figure 5: TERP control-point architecture.

In the control plane, the CP runs the RSVP sig-
naling, OSPF routing, and possibly the Router
Server processes. As shown in Fig. 5, each
NP Ethernet port (eth1 through eth39) is mir-
rored in the CP as a normal interface (reth1
through reth39): CP processes therefore can send
and receive packets (protocol messages) as if the
MPLS node were built as a centralized software-
based router. In addition, the CP kernel IP
routing table is mirrored automatically into the
NP(s): OSPF routing therefore operates com-
pletely transparently from the underlying NP ar-

chitecture: it uses the netlink API to insert routes
into the table. These route updates are notified
to the CP-APIs-wrapper process that creates the
appropriate control messages to automatically in-
sert these routes into the NP. RSVP interfaces
with LRM to perform resource reservation, i.e.,
to reserve, commit, and release resources as nec-
essary in each node. The LRM performs CP APIs
calls that are then translated into control mes-
sages destined to the NP.

All these features allow a seamless integration
of off-the-shelf control-plane software into the CP.
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Figure 6: GTP extensions to the NP software.

Table 2: Performance of GTP tunneling

Instruction Coprocessors Other stall Total
cycles stall cycles cycles cycles

encapsulation 402 170 190 762

decapsulation 455 240 207 902

4 Header Processing: GTP

General packet radio service (GPRS) is a set
of protocols for converging mobile data with IP
packet data. GPRS requires a new infrastructure
in the form of GPRS Support Nodes (GSNs) to
process packets at a very high rate, yet maintain
flexibility as GPRS deployment is still emerging.

Aside from common functions performed by
any IP router, such as routing table lookup and
packet forwarding, a GSN has to encapsulate or
decapsulate IP packets according to the GPRS
tunneling protocol (GTP) that associates a spe-
cific GTP tunnel with each mobile terminal and
performs traffic-volume recording for billing and
flow-mirroring for legal interception.

The design of the early prototype allows up to
one million GTP tunnels. The increase in pro-
cessing complexity required by GTP encapsula-

tion and decapsulation results in a processing ca-
pability of roughly 2.2 million packets per second
(Mpps) per NP.

The encapsulation process requires the retrieval
of a GTP context (i.e., a mapping to a GTP
tunnel) based on the IP address of the packet
being encapsulated and the construction of the
GTP header using information contained in the
context. A header chain composed of the GTP,
UDP, and IP headers is then prepended to the
packet. The decapsulation process requires the
retrieval of the GTP context from the IP address
of the inner IP header. The outer header chain
composed of the IP, UDP, and GTP headers is
stripped, and normal IP forwarding is applied to
the decapsulated packet. In both encapsulation
and decapsulation cases, traffic counters associ-
ated with the context are asynchronously incre-
mented to account for the data transmission.
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As shown in Fig. 6, the implementation of the
GPRS extensions to the network processor con-
sists of the following:

• Design of the GPRS service APIs

• Design of the data structures for storing the
GTP contexts, counters, and tree lookup

• Extension of the control-code library on the
CP to provide new GPRS CP-APIs

• Extension of the control picocode on the NP
to implement the CP APIs

• Extension of the picocode on the data path
to perform the GTP tunneling function.

Generic CP APIs for tree, table, memory block,
and counter management can be used that greatly
simplify the management of the GTP lookup-tree,
the GTP context table, and the GTP counter ta-
bles. The design makes extensive use of the NP
coprocessors: GTP contexts are organized as a
tree, and the TSE coprocessor is used to retrieve
the GTP context associated with an incoming
packet. Counters for traffic accounting are in-
cremented using the counter-management copro-
cessor. Header prepending and stripping use the
flexible frame-alteration hardware assists of the
NP.

Table 2 shows the number of cycles spent for
one frame both in ingress and egress process-
ing for the tunneling tasks, including stall cy-
cles spent waiting for coprocessor results or mem-
ory and instructions accesses. The processing in-
cludes layer-2, layer-3, and GTP encapsulation or
decapsulation.

5 Intelligent Forwarding:
Adaptive Load Balancing

Many networking applications, such as Web
server farms, benefit from spreading the data
processing among multiple servers or processing

units. The task of adaptively balancing the load
among multiple servers is nontrivial due to the
high volume and unknown characteristics of the
traffic and the need to maintain connectivity of
active packet flows between hosts. To balance si-
multaneously a large number of flows, it is neces-
sary to minimize the amount of state information
stored.

The adaptive load balancing method (Fig. 7)
uses a hardware-based hash function to determine
the destination server. The hash function is based
on the robust hash routing algorithm [11], which
supports arbitrary processing capacities of the
balanced servers, and on its adaptive extension
[12], which minimizes the disruption of the flow-
to-processor mapping. The hash is performed on
a portion of the packet that is constant for the du-
ration of a flow, such as the source address. The
method alternates between a state where only one
hash function is computed, and a transient state,
where two hash functions are computed.

At the initial phase, one hash function is con-
figured, based on the resource capacities of the
servers. Once the method has been put into oper-
ation, statistics are accumulated on the resources
utilization. If some servers become over-utilized
relative to other servers, a new hash computation
is determined. The new hash function Hnew op-
timally distributes network traffic based on the
statistics gathered.

During the transient period, both the old (Hold)
and the new hash functions (Hnew) are com-
puted on each packet simultaneously. Packets
in the intersection of the two hash functions
(Hnew = Hold) continue to be routed to the result-
ing server. Packets that do not fall in the inter-
section of the two hash functions (Hnew 6= Hold)
are redirected to the CP for routing. The CP
keeps state for each flow it sees and routes flows
in progress to the result of the old hash function
and new flows to the result of the new hash func-
tion. The state for flows that are finished or do
time-out is deleted. After a configured period of
time, Multi-Field Classification rules, which spec-
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5 INTELLIGENT FORWARDING: ADAPTIVE LOAD BALANCING

Figure 7: Server Load Balancer on the NP: diagram of the data path.

ify to which server the flow is routed, are installed
for the remaining (”long-lived”) flows in the state
table. The old hash function is then discarded
and the method returns to a state of a single hash
function. The Multi-Field Classification rules are
being further monitored and removed upon flow
termination or time-out.

The method continually alternates between the
one-hash and two-hash states, thus adapting to
the current traffic conditions.

Advantages of this approach include:

• No flows in progress are ever moved between
servers, ensuring uninterrupted flow connec-
tivity;

• State information is only maintained for
flows not in the intersection of the two hash
functions, minimizing hardware costs;

• The intersection of the two hash functions
is mathematically maximized, thus further
minimizing the state kept;

• Routing is performed partially in hardware,
using hashes performed by the TSE coproces-
sor in the NP, thus exploiting the high data
rate of the device.

Several software and hardware components of
the PowerNP have been used in prototyping
the load balancer application: standard layer-
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2, layer-3 and layer-4 (Multi-Field Classification)
forwarding elements, as well as the hash func-
tion of the TSE coprocessor. The availability
of these ready-made components made the data-
path programming on the NP shrink to the rel-
atively modest work of implementing the hash
routing method, its managing API and the CP
redirection. The speed and good spreading prop-
erties of the hash function in the TSE coproces-
sor enable us to consider the hash computation a
black-box, eliminating the necessity to implement
one’s own hash function.

The number of processor instructions required
to execute the hash routing method on each
packet is dependent on the number of balanced
servers M . The instructions are primarily dedi-
cated to reading and carrying out operations on
the per-server weights, while calling the TSE co-
processor in parallel. Up to M = 8 the prototype
implementation requires executing 75 + M ∗ 20
instructions. For M > 8, the number of instruc-
tions executed grows logarithmically with M , as
the weights’ table is then organized into a tree
structure. Further details about the implementa-
tion can be found in [13].

6 Payload Processing:
Active Networking

The following two major approaches have been
discussed by the Active Networking community:
The capsule approach [14–16] embeds into data
packets active code that is executed on each node
along the path. The programmable switch ap-
proach maintains the existing packet format and
provides programmability by a discrete mecha-
nism that supports the dynamic downloading of
programs [17, 18]. Custom code has to be loaded
into routers prior to data path packet handling so
that it can be executed upon packet arrival.

The combination of the capsule approach with
a byte-code language that possesses intrinsic
safety properties [16] leads to code compactness

and architectural neutrality, and fits into the run-
to-completion thread model or the pipeline model
of NPs. The execution environment that emulates
the corresponding virtual machine can be imple-
mented in the data plane of NPs. In the pipeline
model, a certain number of NP cores could be
dedicated to active code processing.

Such a framework provides the necessary flex-
ibility and safety needed in active networks [19].
Although the approach is general enough to be
used for other applications, our work on Active
Networks is motivated by the fact that end-to-end
QoS guarantees cannot be given in IP networks
today. Active Networks shift the traditional view
of networking where programmability is given by
the definition of protocols, and hence limited to
their functionalities, towards a world where pack-
ets can carry active code that is being executed
on-the-fly in networking nodes. Inter-operation
between different protocols and translation mech-
anisms between existing QoS frameworks, as can
be encountered in heterogeneous environments, is
not feasible using protocols, but can be solved
with active networks.

Additional speed up compared to interpre-
tation in the execution environment can be
achieved by just-in-time (JIT) compilation of ac-
tive code [20]. For a typical active network
framework the number of processor cycles spent
for compiling an individual instruction is only
slightly greater than the number of cycles needed
for interpretation. We measured that native ex-
ecution of an individual machine instruction is,
on average, more than ten times faster than in-
terpreting an equivalent byte-code from the vir-
tual instruction set. From these results, it is clear
that the performance benefit of JIT compilation
increases the more often the processor executes
a part of the program, or even the entire pro-
gram, without recompilation. Reuse depends on
the amount of recursion as well as looping in the
programs and can be supported by caching com-
piled code either at routers (e.g., reuse for packets
of the same flow) or inside the packet. In the lat-
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ter case, compiled code can be reused at every
intermediate router that supports the same na-
tive instruction set.

 

Congested Hop Counter

 

Traceroute

 

Scout Packet

0 2000 4000 6000 8000

Interpretation Compilation Execution

Cycles

Figure 8: Execution cycles for active code on a
NP.

We implemented and tested a general active
network setup based on a dialect of the SNAP
active networking language [16] on the PowerNP.
Results show that JIT compilation is not only fea-
sible in an active router because the compiler is
small enough and fast enough to run in the data
plane’s picoprocessors, but also leads to signifi-
cant performance improvements. Figure 8 com-
pares three different types of active packets. The
scout active packet discovers the list of active
routers between the source and destination and is
22 byte-code instructions long. It ensures that the
list does not grow beyond its allocated memory
boundary. Although compilation and execution
do not outperform interpretation, the remarkable
execution cycle cost shows the potential of native
code caching techniques. The traceroute active
packet sends a new active packet containing the
IP address of the current traversed router back
to the source. As opposed to the scout packet,
the traceroute packet consisting of 26 byte-code
instructions does not perform memory bound-
ary checks because information is immediately
sent back. The performance of JIT compilation
is slightly reduced as not all byte-code instruc-
tions are executed on all hops, therefore the JIT

compiler unnecessarily compiles parts of the code
not needed at the current hop. The third active
packet is a congested hop counter using 28 byte-
code instructions. The program collects informa-
tion on the number of congested queues in active
routers along a path through the network. In con-
trast to the previous packets, this program uses
a loop to accumulate the data and performs tree
lookups in the loop, hence leading to accelerating
JIT compilation.

Not all of the assumptions apply to currently
existing NPs: critical for the generic applicability
of JIT compilation in active networks are write
access to the instruction memory and sufficient
instruction memory size to hold the compiler and
the JIT-compiled active code.

7 Protocol Termination: SCTP

Protocol termination within the network is a tech-
nique that allows the realization of applications
such as stateful firewalls, application-level server
load balancers or even transport-layer protocol
gateways. Available solutions are often based on
a given host-based transport stack, which typi-
cally leads to significant performance limitations.
To overcome these limitations, the integration of
a wire-speed protocol termination into an NP-
based intermediate system was envisioned. In this
context, the termination of a typical stateful, re-
liable transport protocol such as TCP poses the
following challenges:

• A per-microflow state context must be main-
tained efficiently.

• A timer service for protocol timers must be
offered.

• Segmentation and reassembly (SAR), and re-
transmission services will employ per-context
intermediate packet buffering.

• The typical NP limitations on the available
instruction memory size are in conflict with
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the extensive functionality of some protocols.

• The protocol termination environment
should provide a clean API to allow the
seamless and efficient integration of ap-
plications such as a firewall or a load
balancer.

A challenging example is the termination of the
SCTP protocol [21] on the PowerNP. The SCTP
protocol was chosen because it combines protocol
complexity such as multihoming, multistreaming,
partial message ordering and cookie-based asso-
ciation establishment with such typical demands
as reliability and robustness.

A first prototype on the PowerNP implements
full SCTP termination and already includes mul-
tistreaming and multihoming. It offers a socket–
like API to easily link together with the envi-
sioned applications at the picocode level. The im-
plementation gives enough headroom in available
code space to integrate with such applications.

Although it is still too early to give perfor-
mance numbers it can be stated that the termina-
tion of several hundred thousands of SCTP flows
on this type of NP is possible. The model of sev-
eral parallel, run-to-completion threads, each op-
erating on a given SCTP context at a time, on the
one hand, forces to use a semaphore-based con-
text locking mechanism. On the other hand, the
run-to-completion model allows the implementa-
tion of a natural, event-based code path. Possible
events are incoming packets, timer events and ap-
plication downcalls.

Except incoming packet checksum verification,
the entire SCTP code operates on packets in the
egress data store of the NP. This gives the nec-
essary amount of packet memory to store data
to implement send and receive windows, for SAR
and for packet retransmission.

8 Conclusion

The case studies presented here help us visualize
and understand several driving factors related to
NPs. Figure 9 summarizes how each case study
is composed of configurations of existing logical
blocks (cf. Fig. 4) and/or new logical blocks with
their own CP APIs.

First, they provide insight into the functions
that can be performed on NPs, how they can be
implemented and how they fit into applications.

Second, we examined the NP features required
by different applications. Some of these require-
ments have been summarized in Table 3.

Third, these different requirements also help
explain why the current NPs cover such a wide
variety of the design space. Depending on the
applications envisioned by the designers, differ-
ent decisions and compromises had to be imple-
mented.

Some of the open issues in the NP space
include software durability, which they share
with many other specialized, embedded systems.
The processor families offer various programming
paradigms, abstraction layers, and coprocessors
and/or hardware assists. Therefore, it is currently
nearly impossible to write code that would easily
port to a different family. But it is also difficult to
foresee what improvements and new features fu-
ture members of a family will support, thus mak-
ing it advisable to revisit and reoptimize the code
when new family members appear.

Fortunately, this is changing for the better.
For code running in the data plane, use of a
smart optimizing compiler permits to write rel-
atively architecture-independent code. With ap-
propriate, evolving libraries, key subfunctions
can be transferred progressively and seamlessly
from software implementation to hardware, main-
taining backwards compatibility. In the con-
trol plane, standard interfaces are being devel-
oped and joined with capabilities for dynamic NP
feature discovery to allow NP-independent code.
Currently, working groups such IETF ForCES [1]
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Figure 9: Programmer’s view of the five case studies.

and NP-Forum [2] are developing the relevant
protocols and semantics, allowing key perfor-
mance functions to be easily offloaded onto the
NP from the CP.

Being forced to implement on an ASIC only a
subset of the examples presented in this paper
would critically delay time-to-market as well as
significantly reduce the ability to adapt to future
changes in network patterns or protocols. Off-
loading them to an embedded general-purpose
processor or even the CP would radically reduce
the performance achievable. Thanks to their high
speed combined with extensibility and modular-
ity, they speed up the development of both control
and data path thanks to higher-level interfaces

and pre-existing, reusable building blocks.

Stepping back to see the big picture, we can
conclude that versatility is one of NPs strongest
features. With comparably little effort, it is pos-
sible to implement new features to dramatically
increase the value offered by a network device,
and to to offer new and powerful functions, often
combined from amongst a wide variety of existing
building blocks. We believe that in the network-
ing world, this makes NPs a strong competitor
to ASICs for all but the highest-performance net-
work devices and thus expect their use to grow
dramatically in the near future. This will open
the door to ever more versatile networks,which in
turn will call for new methods to achieve efficient
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Table 3: Feature requirements

Case Requirements

BAT Probability operations
Many per-flow queues
Timers

TERP Policing, Flow-Control, Scheduling,
and BA Classification
Packet forwarding to CP
State synchronization NP ↔ CP

GTP Millions of exact-match classifier rules
Concurrent counters
Frame size alteration (pre-/appending)
Large packet storage for reordering

Load Collaboration NP ↔ CP
Bal. Fast hash of disjoint header fields

Variable hash function
Multi-Field Classification for exceptions
Fast update of MF Classification rules

Active Direct write to instruction memory
Nets Access to forwarding information

Programmable per-packet forwarding
Program-controlled multicast
Payload processing

SCTP Collaboration NP ↔ CP
Fast CRC
Frame size alteration (pre-/appending)
Large packet storage for reassembly
and reordering
Mutual exclusion
Scalable per-flow timer support
Payload processing

deployment of services in such networks [22].
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