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Abstract

Storage systems are increasingly subject to attacks. Cryp-
tographic file systems mitigate the danger of exposing data
by using encryption and integrity protection methods and
guarantee end-to-end security for their clients. This paper
describes a generic design for cryptographic file systems
and its realization in a distributed storage-area network
(SAN) file system. Key management is integrated with the
meta-data service of the SAN file system. The implemen-
tation supports file encryption as well as integrity protec-
tion through hash trees. Both techniques have been imple-
mented in the client file system driver. Benchmarks demon-
strate that the overhead is noticeable for some artificially
constructed use cases, but that it is very small for typical
file system applications.

1. Introduction

Security is quickly becoming a mandatory feature of
data storage systems. Today, storage space is typically
provided by complex networked systems. These networks
have traditionally been confined to data centers in physi-
cally secured locations. But with the availability of high-
speed LANs and storage networking protocols such as
FCIP and iSCSI, these networks are becoming virtualized
and open to access from user machines. Hence, clients may
access the storage devices directly, and the existing static
security methods no longer make sense. New, dynamic se-
curity mechanisms are required for protecting stored data
in virtualized and networked storage systems.

A secure storage system should protect the confidential-
ity and the integrity of the stored data. In distributed stor-
age systems, one can distinguish betweendata in flight, i.e.,
data in transit on a network between clients, servers, and
storage devices, anddata at rest, i.e., data residing on a
storage device. Data at rest is generally considered to be at
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higher risk than data in flight, because an attacker has more
time and opportunities for unauthorized access. More-
over, new regulations such as Sarbanes-Oxley, HIPAA, and
Basel II also dictate the use of encryption for data at rest.

Storage systems use a layered architecture, and crypto-
graphic protection can be applied on any layer. For ex-
ample, one popular approach used today is to encrypt data
at the level of the block-storage device, either in the stor-
age device itself, by an appliance on the storage network,
or by a virtual device driver in the operating system (e.g.,
encryption using the loopback device in Linux). Its ad-
vantage is that file systems can use the encrypted devices
without modifications, but such file systems cannot extend
the cryptographic security to its users, on the other hand.
This is because any file-system client can access the stor-
age space in its unprotected form, and that access control
and key administration take place below the file system.

In this paper, we address encryption at the file-system
level. We describe the design and implementation of cryp-
tographic protection methods in a high-performance dis-
tributed file system. After introducing a generic model for
secure file systems in Section 2, we outline the design of
our implementation in SAN.FS, file system for SANs from
IBM [11], in Section 3. Our design addresses confidential-
ity protection by data encryption and integrity protection
by means of hash trees. We have implemented our design
in SAN.FS and report about its performance in Section 4.
The model itself as well as our design choices are generic
and can be applied to other distributed file systems. Due to
space limitations, we refer the reader to the full version of
the paper [13] for a description of the implementation.

2. Model and Related Work

File System Components. File systems are complex pro-
grams designed for storing data on persistent storage de-
vices such as disks. A file system manages the space avail-
able on the storage devices, provides the abstraction of
files, which are data containers that can grow or shrink and
have a name and other meta-data associated to them, and
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Figure 1. Components of a distributed file
system.

manages the files by organizing them into a hierarchical di-
rectory structure.

Internally, most file systems distinguish at least the fol-
lowing five components as shown in Figure 1: (1) ablock-
storage providerthat serves as a bulk data store and op-
erates only on fixed-size blocks; (2) aninode provider
(or object-storage service), which provides a flat space of
storage containers of variable size; (3) ameta-data ser-
vice, handling abstractions such as directories and file at-
tributes and coordinating concurrent data access; (4) ase-
curity providerresponsible for security and access-control
features; and (5) aclient driver that uses all other compo-
nents to realize the file system abstraction to the operating
system on the client machine.

The first three components correspond to the layered de-
sign of typical file systems, i.e., data written to disk in a
file system traverses the file-system layer, the object layer,
and the block layer in that order. The security provider is
usually needed by all three layers. In most modern operat-
ing systems, the block-storage provider is implemented as
a block device in the operating system, and therefore not
part of the file system.

In traditional file systems, all components reside on the
same host in one module. With the advent of high-speed
networks, it has become feasible to integrate file system
components across several machines into distributed file
systems, which allow concurrent access to the data. A
network can be inserted between any or all of the com-
ponents, in principle, and the networks themselves can be
shared. For example, in storage-area networks only the
storage provider is accessed over a network; in distributed
file systems such as NFS and AFS, the client uses a net-
work to access a file server, which contains storage, inode,
and meta-data providers. The security provider can be an
independent entity, as in AFS or NFSv4.

The NASD architecture [5] and its successor Object

Store [1] propose network access to the object-storage ser-
vice. Compared with accessing a block-storage provider
over the network, this design simplifies the security archi-
tecture. The security model for object storage assumes that
the device is trusted to enforce access control on a per-
object basis. The security provider is realized as an inde-
pendent entity, accessed over a network. Object storage is
an emerging technology, and, to our knowledge, distributed
file systems in which clients directly access object-storage
devices are not yet widely available.

In SAN.FS, on which we focus in the remainder of this
paper, clients access the storage devices directly over a
SAN (i.e., using Fibre Channel or iSCSI). All meta-data
operations are delegated to a dedicated server, which is ac-
cessed using TCP/IP over a local-area network (LAN).

Cryptographic File Systems. Cryptographic file sys-
tems encrypt and/or protect the integrity of the stored data
using encryption and data authentication. Cryptography is
used because the underlying storage provider is not trusted
to prevent unauthorized access to the data. For example,
the storage provider may use removable media or must
be accessed over a network, and therefore proper access
control cannot be enforced; another common example of
side-channels to the data are broken disks that are being
replaced.

In a system using encryption, access to the keys gives
access to the data. Therefore, it is important that these-
curity provider manages the encryption keys for the file
system. Introducing a separate key management service,
which has to be synchronized with the security provider
providing access control information, only complicates
matters. Analogously, the security provider should be re-
sponsible for managing integrity reference values, such as
hashes of all files.

File systems with enhanced capabilities such as crypto-
graphic protection exist in two forms: either as amonolithic
solution, realized within an existing physical file system
that uses an underlying block-storage provider, or asstack-
ableor layeredvirtual file system, which is mounted over
another (physical) file system.

Previous Work. A considerable number of prototype and
production cryptographic file systems have been developed
in the past 15 years. We refer to the excellent surveys by
Wrightet al.[16] and by Kher and Kim [9] for more details,
and mention only the most important systems here.

Most early cryptographic file systems are layered and
use the NFS protocol for accessing a lower-layer file sys-
tem. A prominent example is CFS [2], which uses an NFS
loopback server in user space and provides per-directory
keys that are derived from passphrases. SFS [10] is a dis-
tributed cryptographic file system also using the NFS inter-
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faces, which is available for several Unix variants. These
systems do not contain an explicit security provider respon-
sible for key management, and delegate much of that work
to the user.

SFS-RO [3] and Chefs [4] are two systems protecting
file integrity using hash trees designed for read-only data
distribution, where update are only possible by using off-
line operations.

Microsoft Windows 2000 and later editions contain an
extension of NTFS called EFS [14], which provides file en-
cryption with shared and group access. It relies on the secu-
rity provider in the Windows operating system for user au-
thentication and key management. As it is built into NTFS,
it represents a monolithic solution.

Many recent cryptographic file systems follow the lay-
ered approach: NCryptfs [15] and eCryptFS [7] are native
Linux file systems, which are implemented in the kernel
and use stacking at the VFS layer. EncFS [6] for Linux is
implemented in user-space relying on Linux’s file system
in user space module (FUSE).

Except for Windows EFS and apart from using a stack-
able file system on top of a networked file system such
as NFS or AFS, there are currently no distributed crypto-
graphic file systems that offer high performance and allow
file sharing and concurrent access to encrypted files.

3. Design

SAN.FS. SAN File System (SAN.FS) from IBM, also
known asStorage Tank, implements a distributed file sys-
tem on a SAN, providing shared access to virtualized stor-
age devices for a large heterogeneous set of clients, com-
bined with policy-based file allocation [11]. It is scalable
because the clients access the storage devices directly over
the SAN. This is achieved by separating meta-data opera-
tions from the data path and by breaking up the traditional
client-server architecture into three components, as shown
in Figure 2.

The three components of SAN.FS are: First, a client
driver, which comes in several variations, as a VFS
provider for Unix-style operating systems such as Linux
and AIX, or as an installable file system for Microsoft Win-
dows. The client driver also implements an object service
(according to the model of Section 2) as an intermediate
layer. Second, there is a meta-data server (MDS), which
runs on a dedicated cluster of nodes, implements all meta-
data service abstractions such as directories and file meta-
data, and performs lock administration for file sharing. The
storage devices, which are standard SAN-attached storage
servers that implement a block-storage service, are the third
type of components. Note that SAN.FS does not contain a
security provider, but delegates this function to the clients.

In SAN.FS, all bulk data traffic flows directly between
clients and the storage devices over the SAN. The client
communicates with the MDS over a LAN using TCP/IP
for allocating storage space, locating data on the SAN, per-
forming meta-data operations, and coordinating concurrent
file access. The protocol between the client and the MDS
is known as theSAN.FS protocol. The MDS is responsible
for data layout on the storage devices. It also implements
a distributed locking protocol in which leases are given to
clients for performing operations on the data. As the clients
heavily rely on local data caching to boost performance, the
MDS essentially implements a cache controller for the dis-
tributed data caches at all clients in SAN.FS.

SAN.FS maintains access control information such as
file access permissions for Unix and the security descriptor
for Windows in the meta-data, but leaves its interpretation
up to the client operating system. In order to implement
proper access control for all users of a SAN.FS installation,
one must therefore ensure that only trusted client machines
connect to the MDS and to the SAN. It is possible to share
files between Windows and Unix.

Cryptographic SAN.FS. The goal of our cryptographic
SAN.FS design is to provide end-to-end confidentiality and
integrity protection for the data stored by the users on the
SAN.FS clients such that all cryptographic operations oc-
cur only once in the data path. We assume that the MDS is
trusted to maintain cryptographic keys for encryption and
reference values for integrity protection, and does not ex-
pose them to unauthorized clients. We also assume that the
clients properly enforce file access control. Storage devices
and other entities with access to the SAN are untrusted en-
tities that potentially attempt to violate the security policy.
Hence, using the terminology of Section 2, the meta-data
provider also implements the security provider.

Corresponding with the design goals of SAN.FS, the
client also performs the cryptographic operations and sends
the protected data over the SAN to the storage devices. En-
cryption keys and integrity reference values are stored by



the MDS as extensions of the file meta-data. The links be-
tween clients and the MDS are protected using IPsec or
Kerberos. The encryption and integrity protection methods
are described later in this section.

A guideline for our design was to leave the storage de-
vices unmodified. This considerably simplifies deployment
with the existing, standardized storage devices without in-
curring additional performance degradation. But a mali-
cious device with access to the SAN can destroy stored
data by overwriting it, because the storage devices are not
capable of checking access permissions. Cryptographic in-
tegrity protection in the file system can detect such modifi-
cations, but not prevent them.

We remark that an alternative type of storage device,
providing strong access control to the data, is available with
object storage [1]. Our design is orthogonal to the security
design of object storage, and could easily be integrated in a
SAN file system using object-storage devices.

Confidentiality Protection. The confidentiality protec-
tion mechanism encrypts the data to be stored on the clients
with a symmetric cryptosystem, using a per-file encryption
key. Each disk-level data block is encrypted with the AES
block cipher in CBC mode, with an initialization vector de-
rived from the file object identifier and from the offset of
the block in the file and the per-file key. These choices en-
sure that all initialization vectors are distinct.

The file encryption key is unique to every file and stored
as part of a file’s meta-data. As such a key is short (typi-
cally 16–32 bytes), the changes to the MDS for adding it
are small. The key can be chosen by either the MDS or the
client.

Integrity Protection. The integrity protection mecha-
nism detects unauthorized modification of data at rest or
data in flight by keeping a cryptographic hash or “digest”
of every file. The hash value is short, typically 20–64 bytes
with the SHA family of hash functions, and is stored to-
gether with the file meta-data by the MDS. All clients writ-
ing to the file also update the hash value at the MDS, and
clients reading file data verify that any data read from stor-
age matches the hash value obtained from the MDS. An
error is reported if the data does not match the hash value.

The hash value is computed using ahash treeproposed
by Merkle [12]. A hash tree is computed from the file data
by applying the hash function to every data block in the
file independently and storing the resulting hash values in
the leaves of the tree. The value of every interior node in
the hash tree is computed by applying the hash function
to the values of its children. The value at the root of the
tree, which is called theroot hash value, then represents a
unique cryptographic digest of the data in the file.

A single file-data block can be verified by computing the
hash value of the block in the leaf node and by recomputing
all tree nodes on the path from the leaf to the root. To
recompute an interior node, all sibling nodes must be read
from storage. The analogous procedure works for updates.

We store the hash-tree data on the untrusted storage de-
vices and only save the root hash value on the MDS to-
gether with the meta-data. We allocate a separate file object
per file for storing hash-tree data. The existing functions
for acquiring and accessing storage space can therefore be
exploited for storing the hash tree. The file is visible at the
object layer, but filtered out from the normal file system
view of the clients. The SAN.FS distributed locking proto-
col is modified such that the hash tree object is tied to the
corresponding data file and always covered by the locks for
the data file. A detailed description of our implementation
can be found in the full version of the paper [13].

4. Performance Analysis

In this section, we report on benchmarks of a prototype
implementation of the above design, providing encryption
and integrity protection. Here we give only results for Post-
mark [8], a benchmark creating realistic workloads, and for
a synthetic benchmark, which reads and writes in parallel
large amounts of sequential data. More details can be found
in the full paper [13].

Our testbed consists of two storage servers (one for the
meta data and one for the data to be stored), an MDS, and
a client. All machines are IBM x335/6 and x345/6 systems
with 2 hyper-threaded Intel Xeon CPUs each and clock
speeds from 2.8–3.2 GHz. The client has 3 GB RAM.
The meta-data storage server contains a single drive. The
data storage server contains 14 drives, organized in two
RAID 5EE arrays with seven drives each, in an IBM stor-
age expansion EXP-400 using the IBM ServeRAID 6m
RAID controller. All disks are IBM Ultra320 SCSI disks
with 73.4 GB capacity and running at 10k RPM. The stor-
age devices are connected with iSCSI to the MDS and the
test client over a single switched Gigabit-Ethernet.

Confidentiality Protection. Postmark is a benchmark
for file-system applications and generates a file-system
load similar to an Internet mail, web, or news server. It cre-
ates a large number of small sequential transactions. The
read and write operations generated by the transactions are
parallelized by the kernel. Figure 3 shows the cumulative
read and write rate reported by Postmark v1.51, as a func-
tion of the maximal file size parameter. The minimum file
size is being fixed to 1 kB and the maximum file size varies
from 10 kB to 10 MB. In this test, Postmark is configured to
create 2000 files with sizes equally distributed between the
minimum and maximum configured file size and executes
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Unprotected Encrypted (AES-128) Encrypted (AES-256) Integrity-protected
[Mbit/s] [Mbit/s] [Mbit/s] [Mbit/s]

Read 458 310 279 303
Write 388 283 247 384

Table 1. Performance comparison for reading and writing lar ge amounts of data sequentially.

5000 transactions on them. All other parameters are set to
their default values. Each curve represents the average of
11 differently seeded test runs. The 95% confidence inter-
val is also shown, and is mostly centered closely around the
mean.

The smaller the files are, the larger is the fraction of
meta-data operations. Up to a maximum file size of 200 kB,
the performance is limited by the large number of meta-
data operations. Above this size, we reach the limitations
of the storage devices. In general we can see that the over-
head for confidentiality protection is small in this bench-
mark and lies in the range of 5%–20%.

A second test consists of reading and writing a large
amount of sequential data using the Unixdd command.
Eight files of size 1 GB each are written and read concur-
rently in blocks of 4 kB. The eight files are organized into
two groups of four, and each group is stored on one of the
RAID arrays, to avoid the disks being the performance bot-
tleneck. The goal is to keep the file system overhead min-
imal in order to measure the actual end-to-end read/write
performance. The implementation exploits all four CPUs
visible in Linux for cryptographic operations.

The read and write rates for AES-128 and AES-256 en-
cryption are displayed in the second and third columns of
Table 1. They are calculated from the average execution
time of the eightdd commands, which was measured us-
ing the Unixtime command. It is evident that for such
large amounts of data, the available CPU power and CPU-

to-memory bandwidth become a bottleneck for performing
cryptographic operations. During reads the storage band-
width is reduced by 32% for AES-128 and 39% for AES-
256, compared to not using encryption; during writes, the
reduction is about 27% for AES-128 and 36% for AES-
256, respectively. The measurement, however, represents
an artificial worst case for a file system. Additional tests
revealed that the performance using iSCSI nullio-mode,
where no data is stored on disk, achieves about 800 Mbit/s
for reading and about 720 Mbit/s for writing of unencrypted
data, thus saturating the Gigabit Ethernet (including the
TCP/IP and iSCSI overhead).

Integrity Protection. We describe measurements with
the same two benchmarks as for encryption. We ran Post-
mark and applied integrity protection using SHA-256. The
third column of Table 2 shows the reported throughput in
terms of a cumulative read and write rate for a maximum
file size of 20 MB and a total number of 1000 data files.
The “unprotected” case corresponds to the results reported
in Figure 3. The table also shows the performance of en-
cryption and integrity protection combined.

For the other test involving large sequential reads and
writes, the third column of Table 1 contains the rates with
SHA-256 for integrity protection. The test uses the same
setup as above. Writing shows no significant overhead be-
cause the hash tree is calculated and written to disk only
after all file data has been written when dirty buffers are



Unprotected Integrity-protected Difference
[MBit/s] [%] [MBit/s] [%] [%]

Unencrypted 219 156 -28.7
Encrypted with AES-128 202 -8.0 147 -5.8 -27.1
Encrypted with AES-256 198 -9.6 141 -9.7 -28.8

Table 2. Performance of integrity protection and combined e ncryption and integrity protection using
Postmark (cumulative read and write rate). The “Unprotecte d” columns show the throughput without
integrity protection, without encryption, with AES-128 en cryption, and with AES-256 encryption. The
second column denotes the relative performance loss due to u sing encryption. Analogously, the
columns under the heading “Integrity-protected” show the r ates with integrity protection applied.
The fifth column “Difference” shows the relative loss due to a pplying integrity protection for each of
the encryption choices.

cleared. The hash tree size is about 1% of the size of the
file. In contrast, the read operations are slower, because
the hash tree data is pre-fetched and this incurs a larger la-
tency for many low-level page-read operations. Reading
may also generate a pseudo-random read access pattern to
the hash-tree file.

The results show that encryption has a smaller impact on
performance than integrity protection. This is actually not
surprising because integrity protection involves much more
complexity. Recall that our implementation first reads all
hash-tree nodes necessary to verify a data page before it is-
sues the read operation for the data page. This ensures that
the completion of the page-read operation does not block
because of missing data. Executing these two steps se-
quentially simplifies implementation but doubles the net-
work latency of reads. Furthermore, managing the cached
hash tree in memory takes some time as well.
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