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Abstract—The continuous growth in 3D-NAND flash storage
density has primarily been enabled by 3D stacking and by
increasing the number of bits stored per memory cell. Unfortu-
nately, these desirable flash device design choices are adversely
affecting reliability and latency characteristics. In particular,
increasing the number of bits stored per cell results in having to
apply additional voltage thresholds during each read operation,
therefore increasing the read latency characteristics. While most
NAND flash challenges can be mitigated through appropriate
background processing, the flash read latency characteristics
cannot be hidden and remains the biggest challenge, especially
for the newest flash generations that store four bits per cell.

In this paper, we introduce read heat separation (RHS), a
new heat-aware data-placement technique that exploits the skew
present in real-world workloads to place frequently read user
data on low-latency flash pages. Although conceptually simple,
such a technique is difficult to integrate in a flash controller, as
it introduces a significant amount of complexity, requires more
metadata, and is further constrained by other flash-specific
peculiarities. To overcome these challenges, we propose a novel
flash controller architecture supporting read heat-aware data
placement. We first discuss the trade-offs that such a new
design entails and analyze the key aspects that influence the
efficiency of RHS. Through both, extensive simulations and an
implementation we realized in a commercial enterprise-grade
solid-state drive controller, we show that our architecture
can indeed significantly reduce the average read latency. For
certain workloads, it can reverse the system-level read latency
trends when using recent multi-bit flash generations and hence
outperform SSDs using previous faster flash generations.

I. INTRODUCTION

Today, 3D-NAND flash is the prevalent memory technology
in consumer and enterprise solid-state drives (SSDs) as well
as mobile devices. The transition from 2D to 3D NAND flash
enabled drastic storage density increases and cost reductions
but also helped to address endurance limitations [1], [2].
Storage density continues to increase by the addition of more
layers and stacking groups of layers, enhancing the number
of bits stored per memory cell.

All these techniques affect the latency characteristics in
multiple ways [3]. First, storing more bits per cell exponentially
increases the number of threshold voltage distributions. For
instance, when moving from triple-level cells (TLC) to
quad-level cells (QLC), the number of threshold voltage levels
grows from 8 to 16. Figure 1 gives an overview of the typical
average read latency ranges from different 3D-NAND devices
on the market. The read latencies of multi-level cells (MLC),
TLC, and QLC, are normalized to the average latency of the
single-level cell (SLC) technology. As can be seen, latency
rises with increasing numbers of bits stored per cell.
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Second, the denser the threshold voltage distributions,
the higher is the likelihood that these distributions overlap,
hence, more elaborate read algorithms are needed [4]. Flash
media characterization has shown that QLC NAND flash
is significantly more susceptible to errors than previous
generations [5], [6]. The impact of these drawbacks on read
latency is one of the main reasons why SSDs using QLC NAND
flash are not widespread in the enterprise storage market today.

The latency degradation is not equal across all flash
page types [7]. As we will discuss, some flash pages may
have a lower latency and error rate than other pages. By
placing frequently read data on fast flash pages, we can
achieve a reduction in the average latency, reduce the number
of high-latency reads which results in a tighter latency
distribution, and reduce the probability of read retries. This
idea is promising conceptually, but challenging to implement in
practice. Implementing RHS in a flash controller is constrained
by computational, space, and bandwidth limitations as the
technique must be implemented in hardware and is part of
the critical data path. More specifically, the challenges are:

o The size of the read heat metadata is strictly limited by the
DRAM capacity available in an SSD. Alternatives such as
paging read heat metadata from flash, introduce additional
latency and would defeat the purpose.

o Flash controllers have an upper bound on the computational
complexity as they cannot afford to introduce additional
latency in the critical path. Generally, the chip real estate
and power envelope is limited.

« It is not evident how a controller should use read heat
information with minimally interfering the data path and
other background operations.

« Initially there is no read heat information available, which
is undesirable for real applications, as the read latency can
be initially very high, but improve over time.
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Fig. 1: Average read latencies of different 3D-NAND flash
cell technologies normalized to a typical average SLC latency.



The contributions and findings of this paper can be
summarized as follows:

o We present a new controller architecture that accommodates
RHS in a non-disruptive fashion.

o We present different bit encoding schemes as well as
scalable and lightweight read heat tracking strategies and
explain the various tradeoffs involved.

o We evaluate the efficiency of RHS for various heat tracking
schemes. This is the first study that analyzes the effects
from read and write skew overlap and the ability to adapt
to workload changes.

o We implemented our proposal in a simulation environment,
analyze the potential average read latency reduction that can
be achieved, and show that a QLC controller can achieve
equal or better performance characteristics when compared
with a traditional TLC controller architecture for certain
workloads.

« We demonstrate the end-to-end efficiency of our technique
by implementing it in a commercial enterprise-grade SSD.

The remainder of this paper is structured as follows: Section II
presents relevant NAND flash properties and controller
architectures. Our new read-heat aware controller architecture

and read-heat tracking strategies are introduced in Section III.

Then, we describe our simulation environment and evaluate our
controller architecture by means of extensive simulations and on
our real SSD controller (Section IV). Section V gives a survey
of related work before concluding our paper in Section VI.

II. BACKGROUND

We first describe some of the relevant NAND flash memory
properties and then give an overview of existing flash
controller architectures.

A. Properties of NAND flash memory devices

NAND flash cells store data as electrical charge placed in
the floating gate or charge trap layer of the transistor forming
the cell. Typically, several thousand cells are connected
through a single word-line (WL), while several hundreds or
more than a thousand WLs form a block. Depending on the
amount of charge stored, the cell belongs to one of several
states or levels. Figure 2 depicts the probability density
function (PDF) of the threshold voltage V;; distribution in
a TLC NAND flash device and the associated states. The
number of states [ is given by the number of bits n stored
in a cell as / =2". When no charge is stored, the cell is in
the erase state E. All other states, L1 to L7, are reached after
programming when some charge is placed into the cell.

A WL is organized into n physical pages, one for each
bit stored in the cells forming that WL. Figure 2 illustrates
an exemplary mapping of the most-significant bit (MSB), the
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Fig. 2: Threshold voltages V;;, in a TLC flash device.

Page |E L1 L2 L3 L4 L5 L6 L7 L8 L9 L10L11L12L13L14L15|# Thr
P,sBf1 111111 1]000000O0O0/1
P, |1 1 1 10 000000 O0[1 1 11]2
P, 1 1]0 0 0 OJ1 1 1 1]J0 0 0 OJ1 1 | 4
P,msy1]0 0]1 1]Jo o1 1]Jo o1 1]Jo oJ1 |8
(a) ORBC: Exponentially increasing number of read thresholds.
Page |E L1 L2 L3 L4 L5 L6 L7 L8 L9 L10L11L12L13L14L15|# Thr
P,sgf1 111111 1]000000O0O0TO0 1
P, |1 1 1]0 0 0 0]1 1J0 0 0 o]1 1 1 | 4
P, |1 1J0 O[1 1J0 0 0 0 O]1 1 1 1]0 | 5
P,msBy1]0 0 0 O0J1 1 1 1 1]Jo oJ1 1]J0o 0 |5

(b) PBBC: Single read threshold for lower page and balanced number of
read thresholds for other page types.

Page |E L1 L2 13 L4 L5L6L7 L8 L9 L10L11L12L13L14L15|# Thr
P,(sB)[1 1]J0 0 0J1 1 1 1 1 1J0 0 0 0 0 [ 3
P, 170 0 0 0 0 O]1 1 1[0 O]1 1 1 1 |4
P, 11 1J0 0 0 0 0 OJ1 1 1 1J0 OJ1 | 4
P,(MSBj1 1 1 1J0 OJ1 1J0 0 0 0 0 0]1 1 | 4

(c) MBBC: Maximal balanced binary coding scheme.
TABLE I: Exemplary Gray coding schemes.

center bit (CB), and the least-significant bit (LSB) to the erase
and program states of a TLC flash cell. A physical page is the
granularity at which data is programmed. As charge cannot be
removed from cells, programming can only increase the amount
of charge in a cell and an extra erase operation is needed to
remove the charge of all cells in a block. When reading a
physical page, only a single bit of information is extracted
from each cell of the selected WL. As only a single read voltage
level can be tested at a time, the read out is done in an iterative
process where each one of the tested threshold voltages from
the set of read voltages Vi,...,V; adds up to the read latency.

B. Gray coding

Gray coding schemes, also known as reflected binary coding,
order the binary values in a code such that two successive values
differ in only a single bit [8]. In flash, charge variations in cells
may result in the crossing of a single read voltage level such that
a neighboring state is detected upon a read operation instead of
the originally programmed one. Such crossings increase the raw
bit error rate (RBER). Preferably, one would like to minimize
the number of affected bits from a single crossing event. The
properties of Gray codes guarantee that only one physical page
sees an increase in the error count from a single crossing.

There are many variants of Gray codes. Here, we focus
on three particular Gray codes to pinpoint their effectiveness
in RHS: The original reflected binary coding (ORBC) [8], a
partially-balanced binary code (PBBC), as well as a maximally
balanced binary code (MBBC) [9]. Typically, flash devices
only implement a single coding scheme.

An example of the ORBC is given in Figure 2, where
the read threshold voltage V4 is applied to read the LSB,
thresholds V, and Vg the CB, and V|, V3, Vs, and V; the MSB.
Table I gives an overview of the three selected Gray coding
schemes for a QLC NAND flash device. The four physical
pages in a WL are sorted in the programming order. In
ORBC, reading a P; page implies testing eight read thresholds
resulting in a significantly higher read latency than the F,
page. PBBC retains the single threshold for the P, page, but
balances the number of read thresholds for all other page
types while the MBBC balances all read thresholds.



C. Controller architectures

Early multi-bit NAND flash devices only supported a single
mode meaning that the provided command set only allowed for
programming all bits in the cells to operate the device reliably.
Conventional SSD controllers use flash devices of the same
type and operate those devices in the advertised mode only.
The use of a single tier is still common in enterprise storage as
it provides consistent performance and has low complexity [2].

To improve write bursts while keeping the cost advantage
of multi-bit NAND Flash, hybrid flash controllers were
introduced [10], [11]. From a consumer perspective, hybrid
flash controllers have the potential to approach the read perfor-
mance of SSDs at a much lower cost, using SLC for skewed
workloads. A small number of SLC devices were combined
with many MLC devices where the SLC portion was used as
a fixed-size cache [10]. This architecture writes data first into
the SLC cache and destages valid data later to multi-bit flash
when the SLC cache is full. While these controllers improve
write latency and throughput for bursty write workloads with
significant idle times, the sustained write performance could
fall below that of a single tier SSD. This is because the
controller must perform two writes internally for every host
write, in the worst case. From a cost perspective, it is beneficial
to build SSDs from a single flash type and leverage the ability
of recent flash generations to operate in either a high-density
multi-bit mode or in a high-performance single-bit mode [11].

Later, the second generation of hybrid controllers introduced
adaptive SLC caches where the amount of SLC blocks is
adjusted based on the current capacity utilization [12], [13].
Such controllers show excellent performance when the used
capacity is low, but when the used capacity increases, the
SSD will hit the same sustained write performance issue. A
more recent approach tries to adjust the tier sizes and data
placement strategy as a function of workload properties to
optimize write performance and endurance [14].

III. DATA-PLACEMENT ARCHITECTURE

In this section, we first propose our data-placement
architecture, describe lightweight alternatives for read heat
tracking, and discuss the implications for a real controller.

A. Description of the architecture

Figure 3 illustrates our controller architecture with a data
placement unit supporting RHS for QLC flash. The architecture
is generic such that it is applicable to all types of flash
controllers from Section II-C. All new components are marked
in yellow. In flash controllers, a data placement unit picks
erased blocks for writing data (1). A fully programmed block
is moved to the occupied block pool (2). When the number of
erased blocks is low, garbage collection (GC) selects a victim
block, with the (close to) least amount of valid data from the
occupied block pool (3) [15]. All data still valid is read and
written to a new location (4), and cleaned blocks are erased and
made available for data placement. This process is performed
in the background such that a small number of already erased
blocks are always available for data placement. Besides GC,
other internal processes such as wear leveling (WLL) may select
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Fig. 3: Generic controller architecture with a data placement
unit supporting RHS.

blocks from the occupied block pool. Finally, the logical-to-
physical (L2P) table is used to map logical pages, also known as
logical block addresses (LBAs), to physical locations in flash.
Host writes (5) are first placed into a cache (6). There
are several types of caches typically used in SSDs. Simple
destage buffers tend to be very small and are used to hide
the flash write latency. Using a non-volatile destage buffer
permits writes to be acknowledged to the host (7) before
they are written to flash. They usually consist of storage class
memory (SCM) such as MRAM, battery-backed DRAM or
SLC flash. The cache could also be resized dynamically using
a variable percentage of the flash blocks in SLC mode. In
this case, blocks are initially configured in SLC mode as long
as the used capacity is low which enables tracking of read
heat information before data is destaged to QLC. As such a
cache can hold up to a quarter of the total capacity, the L2P
can be leveraged to point to either a location in the occupied
block pool or the cache. This has the advantage that it already
allows for the adjustment of the read heat while the host write
is placed into the cache as the L2P has to be accessed.
When the non-volatile cache gets full, data is evicted
from the cache using a cache replacement policy such as
least-recently used (LRU) or first-in first-out (FIFO). The
evicted data is then prepared for destaging to QLC and a
relocation write command is queued to the data placement unit
(8). The data placement unit maintains separate queues for
each read latency class. The read latency classes discriminate
between the different latency characteristics of physical pages.
For example, using ORBC, each page type corresponds to one
read latency class where the P, page maps to the lowest and
the P; page to the highest read latency class. With PBBC, a
single read latency class could cover write requests for the
P. and P; pages. In our design, the queues can hold write
commands to fill up to two QLC blocks. This is sufficient to
achieve good separation as we will show in Section IV. Next,
the read heat counter corresponding to the LBA being relocated
is read from the L2P (9). The RHS unit maps frequently read
LBAs to the lowest read latency class and rarely read LBAs to



the highest read latency class and so on. When accessing the
read heat counter, the data placement unit may update its value
depending on the used read heat scheme described below.

In flash, the physical pages in a block must be programmed
in sequential order to minimize the propagation of programming
errors. Hence, upon programming a physical page, the data
placement unit dequeues a write command from the queue
corresponding to the read latency class that best matches the
current page type (10). In the case no such command is avail-
able, another one is taken from a neighboring queue. As soon
as a page is programmed, the space in the cache can be freed.

Host reads (11) fetch data from either the location at which
it is stored in the occupied block pool (12), the cache (13), or
the QLC block in the data placement unit (14) that is currently
being written. The location is determined by an L2P lookup.
After the completion of the read operation, data is delivered
to the host (15). All host read operations increment the
corresponding read heat counter using one of the algorithms
described below irrespective of where the page read is located.

B. Tracking read heat information

The key parameters that influence the efficiency of read heat
tracking, are, the granularity at which read heat is tracked, the
resolution of the read heat counters, the procedure to update
the heat counters, and the mapping from the read heat counter
value to a read heat stream.

1) Read heat counters: Preferably, we would like to collect
read heat information for every LBA at a reasonable resolution.
As the L2P maps LBAs, typically 4KiB or 16KiB today,
to their physical location, it therefore sounds reasonable to
integrate the read heat counters into the L2P to minimize
memory accesses. However, per-LBA heat information at high
resolution increases the size of the L2P by roughly 50% which
is a non-negligible cost factor when the L2P is kept in DRAM
for performance reasons as is the case for enterprise-level
SSDs !. Therefore, we extend the L2P with a space efficient
k-bit saturating counter to track the read heat. Using k=2, such
a 2-bit counter increases the L2P by only a few percent and
allows for tracking 4 heat levels which matches the maximum
number of QLC page types. This permits a simple mapping
from read heat to latency classes and hence QLC page types.

2) Incrementing read heat: When using low resolution coun-
ters, the read heat should be incremented probabilistically be-
cause the counters saturate quickly otherwise. For a k-bit saturat-
ing counter we denote p; as the probability of incrementing the
counter from value i to i+1 where 0<i<2¥—1 and introduce
ﬁ:[POa---apzkfz} (1)
as the probability vector defining a read heat increase scheme.
For write heat tracking, it has been shown that such a heat
increase scheme is optimal and increasing the number of heat
levels quickly leads to diminishing returns [16].

Note that SSD internal or higher-level scrub reads are not
indicative of the read heat of data and should not increase the
read heat counters. Without going into further details, this can
be achieved, for example, using existing protocol features.

'We assume a 16 bit read heat counter and an SSD with a storage capacity
of 10 TB using a logical page granularity of 16 KiB. This requires a mapping
entry of at least 4 Bytes to address the full LBA space to which 2 Bytes
would be added for the read heat counter.

Host Write GC/WLL Write Host read
RRHD - - Probabilistic
RHGW Reset Reset -
RHWO Reset - -
DGWO - Decrement -

TABLE II: Summary of read heat decrease schemes.

3) Decrementing read heat: We consider four different

read heat decrease schemes as summarized in Table II:

e Random read heat decrease (RRHD): Whenever a read
operation results in an increase of the read heat counter,
another used LBA is randomly selected and its read heat
is decremented.

e Reset on host or GC/WLL writes (RHGW): When an LBA
is overwritten or relocated by GC or WLL, the read heat
counter is reset to zero.

e Reset on host writes only (RHWO): The reset of the read
heat counter is only done upon a host write to the LBA.
Internal relocations do not change the read heat information.

o Decrement on GC/WLL writes only (DGWQO): Any internal
relocation of an LBA will decrement its read heat counter by
one. Host writes preserve the value of the read heat counter.
All four schemes are simple to implement in hardware.

RRHD uses more resources than the others as it requires two

accesses to the L2P and the controller has to select a counter

for decreasing heat of an LBA that actually holds data.

C. Discussion on the architecture

The accuracy of RHS is influenced by the workload proper-
ties (e.g., the read and write skew, the used capacity, the overlap
between the read and write LBA ranges), the size of the cache,
the capacity of relocation write command queues, and the read
heat tracking strategy. With a fixed-size cache, the gathering of
read heat information while data is residing in the cache is very
limited. When the cache is a destage buffer, a good separation
can only be achieved after data is relocated from QLC-to-QLC.

From this perspective, a hybrid controller architecture with an
adaptive SLC cache size has huge advantages and works in syn-
ergy with RHS. First, blocks are initially configured to operate
in SLC mode and read heat information is collected over a long
time frame until the device reaches a certain used capacity point
at which destaging to QLC starts. Once blocks are converted
to QLC, accurate read heat information is then available.

Second, a dynamically resizable SLC cache can be enhanced
with an additional destage buffer. This has the following
advantages: Updating read heat counters comes at no extra
cost because the L2P has to be accessed at the same time.

Third, the SLC GC can be a simple circular buffer. Hence,
SLC blocks remain about the same time (measured in incoming
writes) in the pool during which read heat information is
collected. Thus, RHS is significantly less sensitive to the
GC policy of the QLC pool where the choice of an adequate
GC algorithm is essential due to its limited endurance. For
these reasons, our SSD controller evaluated in Section IV-F
implements this architecture.

Note that our architecture can be combined with so-called
superblocks that group flash blocks from different chips and
planes together as well as write heat separation [2], [17]. We
consider these approaches out of scope of this paper because
they do not influence RHS.



IV. EVALUATION

In the first part of the evaluation, we focus on the average
read latency at queue depth one (i.e., when a single read I/O is
submitted at a time). As real SSD controllers vary significantly
in their implementation, we want to exclude all effects not
related to RHS such as the handling of internal parallelism and
command prioritization. This allows us to study the fundamental
aspects of RHS. Later on, we present results from a commercial
enterprise-grade controller where we implemented RHS.

Most of our tests use skewed synthetic workloads. It has
been shown that real-life workloads typically exhibit a skewed
access pattern [18], [19], [20]. The skewed synthetic workloads
we use in our evaluations follow a Zipfian distribution [21] to
closely mimic real-life workload types. They have been widely
used to study device characteristics [2], [22]. We denote these
workloads as Zipf x/y where we adjust the skew factor of the
Zipfian distribution such that x percent of generated operations
access y percent of the LBA space for the given device size.

A. Simulation environment

Our simulation environment is inspired from a real state-
of-the-art flash controller developed in-house. The full flash
translation layer (FTL) is simulated with a usable capacity
of 1TB consisting of more than ten thousand flash blocks. We
found that scaling up the capacity does not affect the actual
results obtained. The simulator uses a cyclic buffer GC policy
which has the advantage of inherently relocating data and hence
emulating retention or read disturb limits. This is reasonable
as we are not interested in internal write amplification here.

All flash operations are emulated and the actual read latency
values obtained from characterization are used to determine
the achievable latency reductions. The simulator uses a
minimally-sized cache large enough to hold data for two full
QLC blocks on which the data placement unit performs data
separation. Upon a host write, a relocation write command
is immediately queued to the data placement unit. Host writes
and GC queue relocation write commands until the queues
are full. Then, the data placement operation is performed. The
presented results are normalized to the average read latency
of an SLC device from Figure 1.

B. The RHS potential of different bit encoding schemes

We analyze the achievable latency reductions for the
Gray coding schemes presented above for various read
workloads. The L2P mappings are initially randomized such
that each LBA points to a different physical location, a typical
precondition workload for characterizing SSDs [23]. Next,
we issue a large enough Zipfian write workload (i.e., two
full device writes) during which we perform RHS. Using the
apriori knowledge of the read workload that we will exercise
afterwards, we can easily assign each LBA to the correct read
latency class to get the optimal data placement. Finally, we
issue 2TB of reads following the desired read workload and
measure the number of reads for each page type to evaluate
the average read latency for each scheme.

The results are shown in Figure 4. When the reads follow
a uniform random distribution on the entire LBA space, the
data placement has almost no influence and the read latency
matches the average read latency of all page types irrespective

QLC Read Latency
[Normalized to SLC]
o [l N w B w

Random

Zipf 70/30 Zipf 80/20
Read Workload
Fig. 4: QLC read latencies with optimal data placement as

a function of the read workload. The latency numbers are
normalized to the typical average SLC read latency. The
dashed line corresponds to a typical TLC device with no RHS.

Zipf 95/20

of the Gray coding scheme used. Significant latency reductions
can be attained with skewed workloads: For all Gray coding
schemes latency is decreasing with increasing workload skew.

Optimal data placement with ORBC and PBBC outperform
a TLC device without RHS when the skew is higher than
a Zipfian 80/20 and achieve more than 2.1x reduction in
average read latency for Zipf 95/20. When the skew is higher
than a Zipfian 80/20, they outperform a TLC device without
RHS. Further, ORBC is only marginally better than PBBC,
indicating that the capability to identify the read hot data is
key for performing RHS. For FBBC, despite the thresholds
being maximally balanced among all page types, a slight read
latency reduction can still be observed owing to the P, page that
requires sensing one threshold less than the other page types.

C. Comparing read heat tracking strategies

We now study the sensitivity of the different read heat
tracking schemes. In contrast to the previous test, RHS is
performed based on the read heat information gathered during
the test without prior knowledge. The comparison focuses on
the ORBC, which exhibits the highest read latency reduction
above. To determine how close the different tracking strategies
approach the theoretically achievable read latency reduction,
we evaluate a set of workloads using a read-write ratio of
80/20 and 98/2 where both, reads and writes, follow Zipfian
distributions with the same skew factor but with an offset that
minimizes their overlap (i.e., most reads go to an LBA region
that is rarely written to and vice versa).

Figure 5 illustrates the results from a large set of read
heat increase and decrease strategies. The first strategy uses
the same heat increase probability for all p; (Figures 5a and
5d). In the other two strategies, the increase probability drops
exponentially with higher read heat values. In Figures 5b and
Se the first increase probability pg is fixed at pp=1 to quickly
detect whether a page has been read. The results in Figures 5c
and 5f vary po between 1 and 0.05, but use the same exponential
decrease for p; and p,. These increase schemes are combined
with all four read heat decrease strategies from Section III-B3.

Overall, there is no single read heat tracking strategy that per-
forms best for all scenarios and the performance varies signifi-
cantly. First, a high read heat increase probability only performs
well when the read-write ratio is reasonably low (Figure 5a).
As soon as the read-write ratio increases and the workload is
less skewed, read heat counters saturate quickly. In some cases,
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Fig. 5: Sensitivity of RHS to combinations of read heat increase and decrease strategies. The results show the relative achieved
latency reductions compared to optimal placement as a function of various read heat probability increase vectors.

almost no benefit from RHS can be measured (Figure 5d). Sec-
ond, equal read heat increase probabilities p; are very sensitive
to workload properties. They may work very well for highly
skewed workloads, but perform poorly with less skew (Fig-
ures 5b and 5d). Therefore, these strategies should generally be
avoided. Third, a reasonable high probability (i.e., pg=0.4) is
important — especially when the workloads are less skewed (Fig-
ures Sc and 5f). Highly skewed workloads see significantly less
accesses in the cold region and can hence tolerate a lower po.

Using exponentially decreasing probabilities for p; and
p> with a reasonably high pg exhibits the least sensitivity
to workload properties, albeit other configurations may
occasionally perform better. DGWO reduces the average read
heat latency generally better than all other schemes, while
RHGW, RHWO, and RRHD perform similarly well.

D. Read and write skew overlap

Real-world workloads are not only likely to be skewed, but
the read and write skew also tend not to overlap [24]. Here,
we analyze the efficiency of RHS as a function of the overlap
of the read and write skew.

The results in Figure 6 have been obtained using a moderate
and a highly skewed workload (Zipf 80/20 and Zipf 95/20 for
both, reads and writes) and using two different read-write ratios
(i.e., 80/20 and 98/2). Our simulations are based on a fully
utilized SSD. The read and write workloads therefore operate on
the entire LBA space. All curves are plotted as a function of the
offset between the read and write skew where the x-axis denotes
the offset as a percentage of the total capacity by which the
distribution of the writes is shifted relative to the distribution of
the reads. We report the relative achieved latency reduction as a
percentage of the maximum achievable reduction with optimal
placement. Again, the simulations use ORBC. We only show the
read heat decrease strategies of DGWO and RHGW to improve
readability. We have experimented with all strategies and can
confirm that RRHD and RHWO perform similarly to RHGW.

DGWO performs almost always better than RHGW irrespec-
tive of read and write skew offsets. With a moderate workload
skew Zipf 80/20, the read write ratio has a strong influence
on the latency reduction achieved. When the read write ratio
is 80/20, the ability to identify the most read cold data by
incrementing the read heat with a probability of one upon the
first read, significantly improves the achieved latency reduction.

With a high read write ratio of 98/2 and the same moderate
workload skew Zipf 80/20, all strategies except the one using
pi=1 for heat increase achieve between 80 and 93 % latency
reduction for a wide range of read-write skew offsets. When
the workload skew is high, all strategies except DGWO with
pi = 1 achieve high average latency reduction over a large
range of read-write offsets. Only within a small range of about
10% of overlap between the read and write hot LBAs, do
the algorithms exhibit a significant drop in achieved latency
reduction. Almost no latency reduction can be achieved when
the read and write workloads completely overlap.

E. Adaptation speed to workload changes

An important metric is the speed at which RHS adapts to
workload changes. Here, we select the heat tracking strategy
p =[1,0.1,0.01] and DGWO combined with ORBC, that
performs consistently well and mostly outperforms the other
schemes as presented above. In this experiment, all L2P
mappings are randomized, all read heat counters are reset,
and no RHS is performed initially. We then perform a large
amount of reads following a skewed Zipfian distribution.

Next, we issue the same Zipfian-type of workload as writes at
an offset that minimizes the overlap with reads executed before.

Every 10% of the LBA space written, the same read
workload as before is executed and the read latency is
measured. The writes are used to trigger GC and the gathered
read heat information so far is used in RHS when data are
written to new locations. The sequence is repeated until RHS
is no longer able to reduce read latency.
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Fig. 6: Relative achieved latency reduction for DGWO and RHGW as a function of the read and write skew offset.

Figure 7 shows the average latency reduction relative to
optimal data placement as a function of the number of writes.
After writing an amount of data that corresponds to 20 % of the
logical capacity, a significant latency reduction can be achieved
when the workload skew is high. In particular, for a Zipf 95/20
workload, 76.5 % of the possible reduction is already achieved
at this point. Even a lightly skewed workload such as Zipf
70/30 exhibits benefits from RHS at this point, although it only
reaches 21.9 % latency reduction. Zipf 80/20 and 95/20 reach
their maximum latency reduction after an amount of data that
corresponds to 30 % of the logical capacity has been written and
used for RHS while Zipf 70/30 reaches this level at about 40 %.

This is important for hybrid controllers with dynamically
resizable tiers: As initially all blocks are in SLC, they have
time to track sufficient read accesses before blocks are
converted to QLC. When the capacity used increases and the
SLC cache shrinks, data is destaged to QLC blocks and written
to flash pages in accordance with their read heat. Therefore,
such a design can offer both, high storage capacity and good
read performance. For non-hybrid controllers or controllers
with a small cache, the amount of writes to get good RHS
is significant such that actively identifying and relocating read
hot data currently stored in slow pages is advisable [25].

F. Measurements on a real SSD

We implemented RHS in a commercial enterprise-grade
SSD controller with QLC flash using ORBC and measured
its efficiency. We preconditioned the drive with sequential
and random writes such that 80 % of the logical capacity
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was used. Using two concurrent read workloads, the first one
issuing 95 % of the reads to 5 %, and the second one 5 % of
the reads to 95 % to the written LBA space, we measured the
read latency distribution first without RHS. We then added
a concurrent uniform random write workload. At this point,
all overwrites were placed using the read heat information
gathered. We then measured the read latency again.

Figure 8 illustrates the cumulative density functions (CDF)
of the two measured read latency distributions. The x-axis is
normalized to the average QLC latency without RHS. The four
steps visible in the plot are caused by the latency characteristics
of the different page types. We clearly see that the levels
change with RHS. While the number of the fastest P, page
reads has increased from 24.2 % to 44.0 %, the number of the
slowest P; page reads has been reduced by 4 x to only 5.5 % of
all reads. Overall, RHS reduced the average latency by 17.1 %.

V. RELATED WORK

Gray coding schemes are widely used [8], [9]. In data storage
systems, they can be used to reduce the raw bit error rate [26].
Choi et al. [7] introduced invalid data-aware (IDA) coding,
where the voltage levels are reprogrammed when the lower bit
is invalidated to accelerate future reads. The reprogramming
of already programmed cells causes additional cell-to-cell
interference which increases the RBER of neighboring pages
whereas our approach does not affect the reliability. IDA coding
could easily be combined with our heat-aware data placement.

1.00
0.751
w
8 0.50
0.251 —— No read heat separation
With read heat separation
0.00

0.6 0.8 1.0 12 14
Normalized Average QLC Read Latency

Fig. 8: CDF for the read latency measured in a real SSD

normalized to the average QLC latency.



Improving read performance of multi-bit flash based
on latency variation of page types was first introduced in
Fastread [25]. Data migration is only performed during idle
time and only a subset of all pages are being tracked.

Read heat information can be leveraged for other purposes
such as mitigating read disturb effects [27] or creating
additional data copies to reduce the tail latency for frequently
read data [28], [29]. Such techniques are synergistic to our
proposal. Given that heat tracking adds a non-negligible
amount of complexity, it is beneficial to leverage the read heat
information for multiple purposes.

Some existing flash controllers perform write heat separation
to reduce the internal write amplification of an SSD [2], [30],
[31], [32]. There is a tension between performing write and
read heat separation simultaneously. We propose to keep the
write heat separation logic unchanged and only perform RHS
for data that would be normally written inside a block.

VI. CONCLUSIONS

We show that in multi-bit NAND flash the selection of
an appropriate bit encoding scheme enables read latency
variations among different physical page types which can
be efficiently exploited. This paper evaluated manifold key
aspects and trade-offs in the controller architecture that
influence RHS. Our RHS exploits the fact that the access
patterns of real-world workloads are typically skewed. Our
experiments show that close to the optimal read latency can
be achieved, without impacting write performance and with
limited controller changes. In contrast to other heat tracking
schemes, we demonstrate that read heat tracking at a very fine
granularity can be implemented in real controllers supporting
large capacities of several tens of Terabytes. For reasonably
skewed workloads, our design can even outperform previous
faster NAND flash generations at the system level.

RHS efficiency improves with increasing workload skew. We
show that more than 80 % of the potential reduction in average
read latency can be achieved when the read and write skews are
not overlapping. Measurements on a real SSD with RHS show
an average latency reduction of more than 17 % on the system
level. One key aspect is the efficiency at which the heat tracking
scheme can detect never or rarely accessed data locations.

Further, read heat tracking can only start once data has been
written. This is a clear drawback for non-hybrid controllers or
controllers with a small cache as the data has to be relocated in
the background at some point later. Until then, no benefit from
RHS is achieved. We therefore strongly suggest the use of a hy-
brid controller architecture with a dynamically resizeable SLC
cache. This also allows for simplifying the SLC GC, decoupling
the performance of RHS from the QLC GC policy, and hence
offer both, high storage capacity and good read performance.
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