
Understanding the design trade-offs of hybrid flash
controllers

Radu Stoica, Roman Pletka, Nikolas Ioannou, Nikolaos Papandreou, Sasa Tomic, Haris Pozidis
IBM Research, Zurich

{rst, rap, nio, npo, sat, hap}@zurich.ibm.com

Abstract—Over the last few years, NAND flash manufacturers
have steadily increased the number of bits stored per cell to
achieve significant cost reductions. However, the increased density
does not come without drawbacks. All key flash performance
metrics, including latency and endurance, significantly degrade
as bit density increases. Particularly, sustained write throughput
is the worst affected as writes are roughly one order of magnitude
slower than reads and further require precursory block erases in
the background. As a result, many recent flash controllers operate
flash blocks both in single-bit (high endurance and performance)
and in multi-bit (high density) mode. In theory, such hybrid
controllers are a great way of hiding flash technology limitations.
A controller can use a small percentage of the flash blocks in
single-bit mode as a cache which allows orders of magnitude
higher write bandwidth and endurance in environments where
the access patterns of the workload are skewed and bursty. In
practice, however, many devices fall short of expectations when
write performance varies significantly and utilization increases.

We argue that a principled approach is required to understand
the design trade-offs of hybrid NAND flash controllers. To
this end, we develop a modeling framework for estimating the
performance and endurance of hybrid controllers. The modeling
framework computes the internal data movement generated by a
hybrid controller by relying on advanced analytical models that
offer both accurate and fast predictions. The data flow is then
translated into higher-level metrics that quantify upper bounds
for the overall performance of an SSD such as write throughput,
latency, and device endurance. Using our modeling framework,
we compare different controller architectures, identify their
strong and weak points, and show that there is room to improve
the efficiency of the hybrid controllers used today.

Index Terms—hybrid flash controller, modeling, QLC, flash
memory

I. INTRODUCTION

A. Background

The main advantages of the NAND flash storage technology,

namely low cost, low latency, high throughput, high density,

and shock-resistance have made it the storage media of choice

for many enterprise and consumer applications. However,

flash technology comes with its own drawbacks. Flash cells

must be erased in bulk before being written (programmed)

and the erase process is performed at a coarser granularity

(blocks) than read and program operations (pages). In addition,

pages have to be programmed consecutively within a block

which essentially prohibits out-of-place updates. Lastly, and

more importantly, flash cells have limited endurance: they

experience high stress during the program and erase processes,

which degrades them gradually and eventually renders them

unreliable.

TABLE I
TYPICAL CHARACTERISTICS OF 3D NAND FLASH DEVICES.

Operation Flash cell technology
SLC MLC TLC QLC

Page read 20 – 25 μs 55 – 110 μs 75 – 170 μs 120 – 200 μs

Page program 50 – 100 μs 0.4 – 1.5ms 0.8 – 2ms 2 – 3ms

Block erase 2 – 5ms 5 – 10ms 10 – 15ms 15 – 20ms

Endurance 100,000 15,000 3,000 – 5,000 800 – 1,500

Flash-based Solid-State Drives (SSDs) therefore require

sophisticated controllers that implement a wide variety of

techniques to overcome flash idiosyncrasies. A flash controller

introduces an indirection layer, called the Flash Translation

Layer (FTL), whose main objective is to translate logical

to physical addresses and to provide a simple interface to

applications, while hiding the physical media constraints. The

FTL greatly improves write performance as it allows out-of-

place writes and minimizes internal data relocations thanks to

efficient block cleaning algorithms [1]. It further implements

wear-leveling through techniques like health binning [2] which

moves the endurance limit from the worst blocks to the average

of all blocks. Modern flash controllers also employ lower-level

techniques to reduce media errors. Examples include, strong

error correction codes that help to detect and repair read errors

and dynamic threshold voltage shifting that reduces the raw

bit error rate [3], [4].

The continuous pressure on cost reduction led to the in-

troduction of multi-bit flash cells. The first generation, Multi-

Level Cells (MLC) are capable of storing two bits per cell.

Triple-Level Cells (TLC) followed, which store three bits per

cell and, more recently, Quad-Level Cells (QLC) have been

introduced reaching four bits. Unfortunately, the increase in

bit density comes with a reduction in performance and a

severe hit in reliability, as the margins between the voltage

levels are tighter. In Table I we summarize typical endurance

and performance metrics of 3D NAND devices where only

the bit density varies. The values presented are summarized

from publicly available sources such as press releases (e.g.,

[5]), presentations (e.g., [6], [7]) or computed from product

specifications (e.g., [8]–[10]). While there is roughly one order

of magnitude difference between page reads and programs

as well as page programs and block erases for the same

cell technology, latencies have dramatically increased with the

move from SLC to QLC: The program latency has increased

the most, by 30×, while the read latency has increased by 7×
and block erase latency by 5×. At the same time, endurance

has dropped by a factor of 100×.

The significant degradation in latency and endurance has

lead to current QLC-based SSDs having a lower write per-

formance and fewer guaranteed full device writes per day

(DWPD) compared to previous SSD generations. Even though

program and erase latencies can theoretically be hidden

through background destages and erases, they ultimately affect

the steady state write throughput of SSDs. Traditional con-

trollers that operate with a single type of flash cell technology

are therefore not suitable for QLC flash as they will suffer

from poor sustained write performance and low endurance.

The drop in endurance is the most significant challenge for

enabling QLC in SSDs as it directly affects the device lifetime.

From an SSD controller design perspective, it is therefore

essential to address endurance first and I/O performance only

afterwards . Hence, in this paper we first focus on endurance

upper bounds, and then determine the associated write perfor-

mance characteristics. To further improve read performance,

we refer to multi-layer caching hierarchies that have been

extensively studied in the past.

B. Hybrid Flash Controllers

A promising venue to address the limitations of multi-bit

flash technologies is to leverage the ability of the most recent

flash chip generations to operate in either a high-density multi-

bit mode or in a high-performance single-bit mode. Hybrid
controllers with a fixed-size SLC cache were first introduced

in [11], [12] where a small, fixed amount of SLC flash is used

as a cache for the main MLC data storage tier. Later, controller

improvements led to adaptive SLC caches where the amount

of SLC blocks is based on the current device utilization

(i.e., amount of stored data) [13], [14]. QLC-based SSDs

available today use this type of hybrid controller architecture

to implement a dynamically-sized SLC cache [8]–[10].

In Fig. 1, we show the specified write throughput numbers

of several recent SSDs that utilize hybrid controllers with

adaptive SLC caching. The Bursty write bandwidth represents

the performance of the SSD when writing to the SLC tier,

while the Sustained bandwidth represents the long-term write

performance when the SLC cache becomes full and the

internal SLC to QLC data destages and garbage collection

start to interfere with user I/O. The specified device endurance

of these QLC SSDs is only between 0.1 and 0.3 DWPD, a

drop proportional to the PEC endurance presented in Table I.

However, real device-level performance and endurance charac-

teristics depend heavily on the workload properties, including

workload skew and device utilization [15], as well as the

error mitigation activities performed by the controller. It is

therefore difficult for users to predict the actual performance

and endurance of SSDs in the real world.

C. Summary & Contributions

From a controller developer’s perspective, designing a hy-

brid controller is challenging as the right architectural deci-

�

���

����

����

����

���	
��� ���	
��
 ���	
���

�
�
��
�
�
�
�
�
���
�

��
�
����� �����	��

Fig. 1. Write performance for existing hybrid SLC-QLC SSDs.

sions are not obvious. In this paper, we propose a principled

approach to understand the behavior of hybrid SSD controllers.

We focus primarily on explaining the write performance and

endurance of hybrid SLC/QLC-based controllers, given that

the most limiting characteristics of the latest flash generation

are the high page program and block erase latencies and the

low endurance. We develop a modeling framework that can

predict the write performance and endurance of a hybrid SSD

as a function of all relevant parameters and design choices:

controller architecture, SSD hardware resources, NAND flash

properties, type of write workload and capacity utilization. The

framework leverages internally advanced analytical models

to estimate the dataflow inside a hybrid controller and then

applies optimization techniques to automatically tune the pa-

rameters of the controller to identify the best operating regime.

We believe that the modeling approach presented in this

paper can help developers to better understand the trade-offs in

hybrid controller design options and strike a balance between

maximizing performance and endurance while keeping the

implementation complexity reasonable. However, we must

bear in mind that our modeling approach can only deliver

sound upper bounds for an ideal hybrid SSD controller based

on technology characteristics and workload properties from

which we cannot deduce a functional controller implementa-

tion. We see the modeling work as an educational tool to study

the intrinsic trade-offs involved when designing hybrid SSD

controllers. A real hardware controller environment imposes

strict limitations on the available resources in terms of CPU,

memory, power consumption, ASIC or FPGA real-estate,

which cannot be fully addressed by modeling and are out of

the scope of this paper. Therefore, this modeling framework

is not intended to reflect performance aspects that depend on

implementation-specific controller details. Also, the modeling

algorithms presented are not meant to be directly implemented

inside an FTL.

More specifically, our contributions are as follows:

• We introduce novel analytical models that are able to

predict internal data movement inside an SSD with a

hybrid controller architecture. We expect these analytical

models to be useful in many other settings, including the

design of other types of SSDs (see Section V), to predict

cache hit rates in other settings, or to understand write

amplification overhead in log-structured storage systems.

• Starting from the analytical models, we develop a mod-

eling framework that is able to predict high-level met-

Dataflow models

Controller type,
Workload,
Device utilization

Target metrics,
Controller configuration

Upper-tier
models

Lower-tier
models

SSD description
� Flash Technology
� Channels
� Capacity utilization
� Overprovision
� …

Flash technology
� Latencies
� Endurance
� Blocks, pages
� Dies, packages
� …

Controller models

Workload description
� Statistical properties
� …

Core modeling components

Computation
module

Dataflow
module

Optimization
module

Fig. 2. The high-level architecture of the modeling framework including the core components (yellow), basic dataflow models (blue), and configuration
modules (gray).

rics such as write bandwidth, write latency, or device

endurance. These predicted upper bounds are helpful

when exploring and understanding the strengths and

weaknesses of hybrid controllers.

• Using the modeling framework, we show that there is a

large room to improve the efficiency of hybrid controllers

used today. The key is to be able to optimally size the

single and multi-bit tiers dynamically based on workload

properties and leverage write heat information to improve

data placement and destaging. In particular, we quantify

the space for improving a QLC-based SSD, as QLC is

the most limiting Flash technology available today.

D. How to read this paper

We recognize that thoroughly understanding the dataflow

models is time consuming. Although the dataflow models are a

significant contribution of the paper, the manner in which each

model is derived is not critical for understanding the modeling

approach or the results presented. The output of any modeling

algorithm can be reproduced through simulation. As such, the

modeling algorithms should be viewed as accelerators rather

than enablers. Therefore, we suggest the reader to focus first

on understanding the high-level architecture of the framework,

how a concrete controller design is modeled, and how the best

operating point is identified through parameter optimization.

II. MODELING FRAMEWORK

In this section we provide an overview of our modeling

framework. We start with the goals and assumptions and then

present the high-level architecture and internal components of

the framework. We then describe how the basic models are

leveraged to compute the controller-wide dataflow which is

ultimately transformed into the target metrics of interest (i.e.,

upper bounds on performance or endurance). At the end, we

discuss further aspects that address the approaches we took to

validate our models.

A. Overview of the architecture

The goal of the modeling framework is to predict certain

target metrics, including endurance and write performance, of

a controller architecture by taking into account all relevant

parameters encountered in an SSD controller. As our modeling

framework describes the upper bounds of the target metrics

in steady-state, the amount of stored data does not change

over time and the statistical properties of the workload remain

constant. However, using results from different steady-state

configurations can be used to determine optimal configuration

parameters in a real controller such that its configuration can

be adapted dynamically at run-time. Conceptually, modeling

works by answering two interconnected questions: 1) what is

the best configuration for a given controller architecture (i.e.,

by determining the optimal size of the single and multi-bit

tiers and the amount of valid data stored therein); and 2) how

many internal flash operations (e.g., page reads, programs, and

block erases) are performed on average for each user write.

Even though our modeling framework can be used for any

hybrid controller configuration where the tiers could operate in

any combination of single and multi-bit modes, the remainder

of this paper focuses solely on SLC combined with QLC

NAND flash, because the typical characteristics of QLC are

the most limiting ones.

Fig. 2 outlines the high-level architecture of the modeling

framework. Its inputs are the type of the controller architecture,

a workload description, and the current device utilization.

The outputs being generated include the actual value for a

chosen target metric and the optimal values for the internal

controller configuration parameters. Internally, the framework

is composed of three core modeling components (yellow), a

library describing the data flow models in a tier and between

them (blue), and a set of configuration modules (grey).

B. Core modeling components

1) Dataflow module: The internal data movement between

the tiers is computed by the dataflow module based on the

given controller model, the local upper and lower tier models,

and the workload description. For a chosen controller archi-

tecture, the appropriate controller model is selected. Internally,

the controller model leverages the appropriate algorithms that

model the upper and lower tiers. A wide range of controller

models are illustrated in Fig. 3 and discussed in more detail

below. Here, the upper tier operates in SLC mode and the

lower tier operates in QLC mode. The dataflow module can

be thought of as logically connecting the dataflow models by

adjusting their inputs to describe how data moves across the

tiers. For example, most hybrid controller architectures write

new data first to SLC and later destage it to QLC. Therefore,

SLC

QLC

(a) Fixed-sized SLC cache.

SLC

QLC

(b) Adaptive SLC caching
and background destaging.

SLC

QLC

(c) Adaptive SLC caching
with background destaging
and SLC-to-SLC relocation.

QLC

SLC

…

…

(d) Adaptive SLC caching
with heat-aware SLC evic-
tion and relocation.

SLC

QLC

…
…

…

(e) Adaptive SLC caching
with heat-aware data place-
ment, eviction, and relocation.

Fig. 3. Overview of hybrid controller architectures.

the output dataflow from the SLC tier (described as a data-

eviction frequency, the amount of data evicted, and the write

heat distribution of the pages) represents the input dataflow

for the QLC tier.

2) Computation module: Using the output of the dataflow

module, the computation module converts the internal dataflow

into the target metrics of interest. The computation of each

target metric is self-contained and can reflect either the SSD

write performance (e.g., average flash chip busy time, write

throughput, improvement over a QLC-only controller, etc.) or

SSD endurance (amount of data written, DWPD, improvement

over a QLC-only controller, etc.).

3) Optimization module: The identification of the optimal

controller configuration is performed in the optimization mod-

ule. The optimal controller configuration is obtained from the

set of all computed target metrics for the various controller

parameters. Initially, the modeling process starts by assigning

predefined values to the tunable parameters. For example,

a controller could set 10% of the free physical capacity

as an SLC cache. The optimization module then repeatedly

adjusts the input parameters of the dataflow module until

the best operating point is found. Continuing the example,

the optimization module would increase or decrease the SLC

cache size until the device endurance is maximized.

The modeling framework relies on numeric differentiation

using finite difference approximations when searching for

the configuration that maximizes the objective function (i.e.,

maximum write throughput or endurance). For example, when

optimizing the size of the SLC tier to achieve the best

endurance, the derivative w.r.t. the SLC allocation is computed

as follows:
∂E(s)

∂s
=

E(s+ ε)− E(s)

ε

where E is the estimated controller endurance, s is the SLC

size expressed as the fraction of flash blocks used in SLC

mode, and ε � 1 is a configurable fixed size increment.

C. Dataflow models

The dataflow models consist of tier and controller models:

1) Tier models: The mathematical models of the tiers can

be grouped into two classes, one class for the upper tier and

another class for the lower tier of the hybrid controller. The

conceptual difference between the two classes is that data can

be evicted from an upper tier, while it cannot be evicted from

a lower tier. Consequently, a lower tier always has to relocate

data internally, while an upper tier may dynamically decide

to either destage data or recirculate it internally. Each tier

model has a specific set of input parameters and output values.

The output values are derived through analytical equations or

numerical algorithms from the input parameters.

2) Controller models: The controller models describe the

data flow between the tiers as well as how incoming user data

is assigned to a tier. Each controller model is responsible for

computing the system wide dataflow by calling the appropriate

elementary upper and lower tier models. Fig. 3 depicts differ-

ent hybrid controller architectures we have modeled sorted in

an increasing order of implementation complexity.

D. Configuration modules

The configuration modules consist of the workload descrip-

tion, the characteristics of the flash technology, and controller

specific parameters. Knowing the controller type, the test

workload, and the device utilization, we derive the workload

description which summarizes the statistical properties of the

write-hot and write-cold data sets and their sizes that will be

used in the dataflow module. The characteristic parameters of

the flash cell technology used and the internal SSD properties

(such as the number of flash channels and flash chips, over-

provision, etc.), provide the required configuration parameters

for the computation module.

We have general-purpose tier models for arbitrarily skewed

write workloads as well as specific tier models for uniform

random writes. Although a general-purpose model can also

model random writes, we chose this approach for a number

of reasons. First, models for random writes are easier to

understand than others for arbitrary skewed write distributions.

Understanding how to model random writes is the neces-

sary first step towards understanding the generalized models.

Second, general-purpose models can be used to verify the

correctness of the uniform random models. Third, from a prac-

tical perspective, the uniform random models are significantly

faster to compute as they can be described using closed-form

analytical formulas, while the models for skewed writes are

numerical algorithms that involve performing operations on

large vectors.

E. Further details

We implemented our modeling framework in Matlab. To

speed up computation, the modeling framework automatically

caches results at two levels as files. The first level of caching is

at the individual dataflow models that are being computed. The

second level of caching is at the controller design level and

TABLE II
INPUT PARAMETERS FOR THE MODELING FRAMEWORK.

Notation Description
N Number of logical flash pages in the modeled dataset taking into account the device utilization
C The capacity of a tier measured in the number of physical flash pages
r Ratio between capacities in multi-bit vs. single-bit mode (for an SLC/QLC controller r = 4)
α Over-provisioning at maximum physical capacity in QLC mode and 100% device utilization
αslc, αqlc Instantaneous over-provisioning computed as the fraction of the physical spare capacity divided by the used capacity in a tier
sd t, sd a, sd c Total, write-active, and write-cold user data set sizes relative to maximum physical capacity in QLC mode (sd t = sd a + sd c)
�Fw Write heat (the probability distribution of writing each page in the dataset according to the modeled workload)

includes the whole modeling framework such that the output

after optimization is cached. Further, using simple scripts,

we can accelerate the modeling in the computation module

by executing different workloads, capacity utilization points,

or controller types in parallel. In a multi-server execution

environment, we rely on a shared file-system (e.g., NFS) to

consolidate the cache files in the same directory structure. This

strategy allows the modeling processes to reuse intermediary

results whenever possible without any synchronization con-

cerns.

In order to validate the correctness of the modeling frame-

work, we use several testing strategies that help to identify the

source of most implementation and logical errors:

• We validate all closed-form analytical formulas by com-

paring their output with numerical solutions to the same

set of initial data flow equations from which the formulas

were derived. This step ensures we catch mathematical

derivation errors.

• To validate the tier models for random write workloads,

we used a separate software simulation environment that

mimics data movement in an SSD. This step identifies

dataflow modeling mistakes that can occur in the first

stage of developing a tier model when we initially focus

on random write workloads.

• To validate the tier models for arbitrarily skewed write

workloads, we first compare the output of a generic tier

model for a random write workload with the output of the

corresponding random write model. We then use the sim-

ulation environment to validate that the tier can accurately

model arbitrarily generated write distributions. This step

ensures we do not introduce errors when generalizing a

tier model to support arbitrarily skewed writes.

III. ANALYTICAL MODELS AND TARGET METRICS

This section starts by introducing the modeling parameters

used, followed by presenting the analytical algorithms used by

the dataflow models. Finally, we describe how to compute the

target metrics of interest (write performance or endurance).

A. Modeling parameters

There are several classes of parameters we use for model-

ing, namely data sizes, over-provisioning ratios, frequencies
and frequency distributions. All parameters classes represent

relative quantities and have values in the [0, 1] interval. Using
relative values enables many inconsequential parameters to be

abstracted in the modeling process. As stated, our goal is to

compute the relative rates of the data movement and only later

transform these rates into actual target metrics based on the

specifications of an SSD.

Data sizes (denoted by s) are expressed relative to the

physical SSD capacity rather than in absolute units. For

example, a total user data size of 0.5 means that the user data

occupies 50% of the physical SSD capacity when all blocks

are set in QLC mode.

Over-provisioning (denoted by α) represents the rel-

ative ratio of the spare capacity to the data size

(α = physical−logical
logical). We distinguish between the maximum

theoretical over-provisioning (α) when the logical capacity of

the device is filled with user data and all blocks are in QLC

mode versus the tier-specific instantaneous over-provisioning

(αslc, αqlc) that takes into consideration the current capacity

of the tier and the size of the data stored within.

A frequency (denoted by f) represents the rate, frequency, or
probability of a page movement. It is computed either relative

to the global user writes or to the local tier writes. For example,

the rate at which pages are evicted from SLC, fev , represents
the average number of evictions per SLC write. If all writes

are first stored in SLC, then fev also represents the global ratio

of user writes to SLC evictions.

Distributions (denoted with �F) are large vectors where each
element describes the frequency of a page movement occurring

(e.g., a particular page being written, evicted or relocated). The

sum of all probabilities in a distribution is equal to or lower

than 1. Distributions are used only when modeling skewed

workloads. All vector formulas presented in this paper use

element-wise arithmetic operations. We use the symbols � for

element-wise multiplication and � for element-wise division.

1) Input configuration parameters: Table II shows the

notations of the input parameters given to the core modeling

components. The over-provisioning α, which denotes the frac-

tion of additional spare capacity of the total available physical

capacity, is key to control the garbage collection overhead [16].

In our modeling framework, we extend this notion and define

the instantaneous over-provisioning of a tier αslc and αqlc as

the fraction of the spare capacity within a tier normalized to

the current utilization. For controller architectures using write

heat information, we further define the normalized size of the

write-active and write-cold data sets (sd a and sd t) as well as

the write heat distribution of all pages �Fw. These are directly

derived from the workload skew and the utilization.

TABLE III
OUTPUT VALUES OF THE DATAFLOW MODULE.

Notation Description
sslc, sqlc Fraction of the physical flash blocks assigned to the SLC or QLC tiers.
sd slc, sd qlc Fraction of the user data stored in the SLC or QLC tiers.
fw slc, fw qlc Frequency of writing a page to the SLC or QLC tiers. Expressed relative to the user write frequency.
fgc slc, fgc qlc Frequency of relocating a page (SLC-to-SLC or QLC-to-QLC) normalized to the frequency of writes to the tier.
finv slc, finv qlc Frequency of new writes invalidating (updating) a page in the SLC or QLC tiers (i.e., the hit rate of the tier).
�Fw slc, �Fw qlc Frequency or probability distribution of the page writes to the SLC or QLC tiers..
�Fgc slc, �Fgc qlc Frequency or probability distribution of page relocations inside the SLC or QLC tier. Expressed relative to the writes to the tier.

… …

…

…

…

��

1-f1

����

����

��

��

��

��

��

��

��

��

��	
���
����

��	
�

���
�

��	
�
�
�����
�

��	
�
����
���
����� ����

��	
�
����
���
����� ����

��	
�
����
���
����� ����

��	

��
��

…

Fig. 4. A Markov chain model for computing the probabilities with which
pages are evicted, relocated or invalidated.

In particular, the write heat distribution �Fw contains the

update frequencies for each data page in the dataset sorted

in decreasing order. We chose this approach to be able to

model write workloads irrespective of how they are expressed.

When using a synthetic write distribution (e.g., a Zipfian

distribution), we simply use the probability mass function to

compute the individual page update probabilities. Otherwise,

when using a given I/O trace, we scan the trace and compute

the frequencies of the page writes. If a vector becomes too

large, the write distribution can be optionally compressed.

The compression process is straight-forward as it essentially

ensures that the CDF lines for the original and the compressed

vectors are overlapping once the axes are normalized to the

[0− 1] range. By default, our workload distributions have 108

elements, which translates to a ∼1.5TB user data set assuming

the standard 16kB QLC flash page size.

2) Dataflow metrics: Table III introduces the parameters

that characterize the dataflow, i.e., how a controller moves data

inside an SSD. Depending on the workload and the controller

design, not all of these parameters are required at all times.

For example, probability distributions are not necessary for

random workloads.

B. Model derivation techniques

The derivation of the dataflow models relies on the follow-

ing key observations.

Markov chain for page states. First, we compute the

probabilities that a given page is in either of the valid,

invalid, evicted or relocated states. Fig. 4 shows how these

probabilities evolve as a function of the number of writes

����������

�	
���
����	�

���������	�����

���

�
�
�����	�

����

�	

������
���
�

��
�

�����

������

Fig. 5. Dataflow of a storage tier.

experienced between the time a page is written and the time the

page is evicted or relocated. The state (the round circle) at row

i and column j represents the scenario where the page with id i
is valid after j writes. The probability of reaching a state is the

sum of probabilities of all possible paths to that state, while the

probability of a path is the multiplication of all probabilities

along the path. For example, the probability of page i being
written and still valid after k writes is fval = fi ·(1−fi)

k. The

probability distribution of all pages being valid after k writes

is �Fval = �Fw � (�1− �Fw)
k (written using vector notations).

In the particular case of random writes, given that all

update probabilities are equal, the valid page states have equal

probability and can be collapsed vertically. The probability

of a page having valid data after k writes then becomes

fval = (1 − 1
N)k, where N is the number of pages in the

dataset actively updated. For deriving closed form formulas,

we further apply Euler’s limit to obtain: fval � e−
k
N . A similar

modeling technique is also used in [17].

Dataflow balance equations. We make the observation

that the inflow and outflow from a tier, as shown in Fig. 5,

must be equal: the incoming number of page writes must be

equal in steady-state to the number of pages being evicted or

invalidated:

�Fw + �Fgc = �Fev + �Fval = �Fev + �Finv + �Fgc

For random writes, these equations can be further trans-

formed and simplified to reflect the average page flow rates

by applying the sum operator
∑

. Assuming that the incoming

write rate is defined to be 1 (
∑ �Fw = 1), we have:

1 + fgc = finv + fval (1)

fval = fev + fgc (2)

The invalidation rate, finv , is equal to the fraction of the

active data present in the tier:

finv = sd tier (3)

Next, we observe that the physical pages in the tier, C, are

consumed (written) by either new user writes or by relocation

writes. As relocation writes do not produce invalidations,

the number of physical pages in the tier that can store new

incoming data is C(1 − fgc). The number of physical pages

in a tier can be further expressed in terms of the relative tier

size to data size: C = N stier
sd tier

. Therefore, the rate at which

valid pages exit the tier is:

fval = (1− 1

N
)
N

stier
sd tier

(1−fgc) ≈ e
− stier

sd tier
(1−fgc) (4)

Size and distribution of valid user data. We observe that

in order for a page to be invalidated (overwritten) by a new

user write two independent conditions must hold: 1) the page

must be already present in the tier and 2) the page must be

referenced by the new write. We can express this relationship

in terms of probability distributions in a vector form as:

�Finv = �Fda � �Fw =⇒ �Fda = �Finv � �Fw

where �Fda
is the vector of the probabilities of each page being

present in the tier, �Finv is the probability distribution (i.e., the

rates) with which pages are invalidated, and �Fw is the write

probability distribution of the workload. The total active data

size present in the tier is: sd tier =
∑ �Fda

N .

C. Detailed analytical dataflow models

In this Section we describe the analytical dataflow models

for the upper and lower tiers. For each tier we use separate

models for uniform random and skewed workloads.

1) Upper-tier model with LRW eviction for random writes:
We start by modeling the simplest controller architecture

where data is first written to the upper tier (SLC) and then

evicted (de-staged) to the lower tier (QLC), as shown in

Figures 3(a) and 3(b). We consider a random write workload

and an eviction policy that destages the least recently written

(LRW) blocks first. The goal of this upper tier architecture

is to absorb spikes in the write I/O workload and ensure low

write latency and high instantaneous throughput. During idle

periods, the data in the upper tier can be destaged to QLC

when needed. From a development perspective, this design

is attractive due to the low implementation complexity. Most

hybrid QLC controllers on the market appear to use this

architecture [8]–[10]. Algorithm 1 represents the analytical

modeling function for the upper tier.

Algorithm 1 Upper-tier with LRW eviction - Random Writes

LRW cache RW(sd a, sslc) → [sd slc, finv slc, fev]

1: rel sz = sslc
sd a

(relative upper tier size to data size)

2: fev = e−rel sz

3: finv slc = sd slc = 1− fev

The formulas presented in the algorithm are a straight-

forward application of Equations 1-4. Note that this upper tier

model does not have any internal relocations (fgc = 0) and

that pages are evicted from the cache after exactly C = N ·sslc
sd a

user writes.

2) Upper-tier model with LRW eviction for skewed writes:
For arbitrarily skewed writes, the modeling algorithm is

conceptually similar and follows the techniques presented in

Section III-B. The main difference is that we operate with

frequency distributions and we must compute the individual

frequency for each page of the dataset (note the usage of

vector operations). Algorithm 2 shows the upper-tier modeling

function for skewed write workloads.

Algorithm 2 Upper tier with LRW eviction - Skewed Writes

LRW cache(sd a, sslc, �Fw) → [sd slc, finv slc, fev , �Fev]

1: N = |�Fw| (number of logical pages)

2: C = N · sd a

sslc
(number of physical pages in the upper tier)

3: �Fev = �Fw � (�1− �Fw)
C (page eviction distribution)

4: �Finv = �Fw − �Fev (page invalidation distribution)

5: fev =
∑ �Fev (average eviction frequency)

6: finv slc = 1− fev (average invalidation frequency)

7: sd slc =
∑ �Fda

N =
∑

(�Finv��Fw)
N (average active data size)

3) Upper-tier model for occupancy-aware eviction: The

previous upper-tier model with LRW destage can be improved

by introducing the ability to perform SLC-to-SLC relocations

as is illustrated in Fig. 3(c). An occupancy-aware upper tier

works by cleaning blocks using a LRW policy and either relo-

cating data to SLC or destaging data to QLC based on how the

current cache utilization compares to a tunable threshold. The

design improves on the fixed LRW eviction policy especially

in scenarios where the hot write set fits in the cache as it

avoids unnecessary data destages. The utilization threshold for

the data destage is tuned by the optimization module. The

dataflow model for the upper tier with partial LRW eviction

using random writes is described in Algorithm 3.

Algorithm 3 Upper tier with partial LRW eviction - random

writes
LRW cache RW(sslc, sd a, u) → [sd slc, fev , fgc slc]

� input u is the target utilization of the upper-tier (u = sd slc

sslc
)

1: finv slc = sd slc = sslc · u
2: fev = 1− sd slc

3: temp = − 1
sslc·ue

− sslc
sd a·sd a·u (simplifying notation)

4: fgc slc = − sslc·W (temp)
sd a

− 1−sd slc

sd slc

The modeling equations are derived from the dataflow

balance equations specialized for random writes. We first

note that the size of the user data stored in the tier and

the invalidation rate are determined by the target utilization

(Algorithm 3, line 1). We then substitute Equations 3 and 4

in Equation 1 to obtain:

1 + fgc︸ ︷︷ ︸
tier writes

= sd slc︸ ︷︷ ︸
finv slc

+ e
− stier

sd tier
(1−fgc)

︸ ︷︷ ︸
fval

This equation accepts a solution in terms of the Lambert-W

function [18] that is shown on lines 3 and 4 in Algorithm 3.

4) Upper-tier model for heat-aware eviction: An ideal

controller tracks write heat and leverages this information to

prioritize data destage and reduce cleaning overhead through

heat segregation. The destage process is optimal when evicting

the coldest pages rather than the least recently written pages.

Having the hottest data in SLC maximizes the rate of invali-

dations in SLC and minimizes the rate of evictions to QLC.

Algorithm 4 Upper tier with partial LRW eviction - skewed

writes

LRW cache SW(sslc, �Fw, u) → [sd slc, fev , fgc slc]

1: sd slc = sd a · u
2: k = |�Fw| · sslc · u (top kth pages are upper-tier resident)

3: αslc =
1−u
u (over-provisioning for the upper-tier resident

pages)

� Use Alg. 7 to model write amplification for the upper-tier

resident pages

4: fgc slc = WA SW(�Fw[0 : k], αslc)

5: �Fev = �Fw[k :] ; fev =
∑ �Fev

From a modeling perspective, the pages of the dataset can

be separated into two sets based on the write frequency: a hot

set that resides in SLC and a cold set that is initially written to

SLC and then destaged in the background to QLC (the SLC

thus acts as a temporary destage buffer to reduce latency).

Modeling the SLC-to-SLC relocations involves computing the

cleaning overhead of the write workload corresponding to the

pages in the hot set only. We show in Section III-C7 how the

cleaning overhead is computed for arbitrary workloads. The

size of the hot set denotes the number of pages resident in

the SLC tier and is computed based on the target utilization

of the SLC tier, which is a tunable controller parameter and

is subject to optimization.
5) Lower-tier model for random writes: Previous work

has shown that the garbage collection policy for a random

write workload has a negligible dependency on the cleaning

overhead [17], [19]. We use the closed-form analytical formula

from [17] that computes the relocation frequency (fgc) in

terms of the Lambert-W [18] function. The only difference

here is that we need to compute first the instantaneous over-

provisioning, αqlc, as a function of the amount of data stored

in the tier and the currently available storage capacity in the

tier: αqlc =
sqlc−sd qlc

sd qlc
. The size of the data stored in the tier

is computed based on the modeling output of the upper tier.

Algorithm 5 Lower-tier relocations - random writes

WA RW(αqlc) → [fgc, wa]

1: fgc = −W (−(1+αqlc)e
−(1+αqlc))

1+αqlc

2: wa = 1
1−fgc

6) Lower-tier model for skewed workloads using LRW
cleaning: Algorithm 6 describes the exact modeling steps. For

a LRW cleaning policy, the storage capacity can be considered

a circular log-structure where updates are appended to the tail

and cleaning happens at the log head where the oldest written

block is located. When low on space, valid pages are relocated

�

�
�

��� ���	
� ��	��

�� ���	
����	��

��� ���	
����	��

Fig. 6. Unrolling a LRW log-structure into a hierarchy of LRW caches.

from the head to the tail of the log structure, followed by

advancing both head and tail pointers.

Algorithm 6 Lower-tier relocations with LRW cleaning -

skewed writes

WA LRW SW(�Fw, α) → [fgc, wa]

1: N = |�Fw| (Number of logical pages)

2: C = N(1 + α) (Number of physical pages)

3: fgc = 0 ; �Fgc = 0 (Initialization)

4: repeat
5: fgc old = fgc ; �Fgc old = �Fgc

� Pages are either written or relocated with distribution:

6: �F ′
w = �Fw(1− fgc old) + �Fgc old · fgc old

7: C ′ = C(1− fgc) (Physical pages written with new data)

� Once written, pages survive until GC with probability:

8: �Fgc = (�1− �Fw)
C′

� The overall distribution of pages relocated in epoch ith:
9: �Fgc = �F ′

w � �Fgc

10: fgc =
∑ �Fgc

11: until |fgc − fgc old| < tol

Note that writes at the log tail are caused either by: a) page

relocations or b) by user updates. Assume page i is present

in the log. At each new user write, the probability that the

page escapes invalidation and remains valid is 1 − �Fw(i).
The cleaning process does not produce invalidations as it only

relocates internally existing valid pages. After k updates, the

probability the page is still valid becomes (1− �Fw(i))
k.

The main difficulty is determining how many user writes can

be accommodated between the time a page enters the circular

log structure (by being written at the log tail) and the time

the page is GC-ed (when it reaches the log head). Initially,

when the log has no data (the device did not see any writes),

the number of user writes accommodated is N (Algorithm 6,

line 2). However, as pages start to be relocated, less and

less writes can be accommodated before a page is relocated.

Accommodating a lower number of user writes increases in

turn the GC rate. This leads to a circular dependency between

GC rate and the actual capacity of the log structure that is

reflected in lines 6-7.

We solve the circular dependency problem by logically

unrolling the log structure over time by considering an infinite

set of LRW caches with the same capacity that are connected.

Fig. 6 shows how the unrolling takes place. Our algorithm

repeatedly computes the input (line 8) and output (line 9) page

distributions for the log-structures until they convergence.

Algorithm 7 Relocations for Heat Segregation - skewed writes

WA SW(�Finv , αqlc) → [fgc, wa]

� Constants

1: H (number of write heat streams to model)

2: tol = 10−3 (maximum wa error tolerated)

3: N = size(�Fw) (total number of logical pages)

4: M = αqlc ·N (number of physical pages)

� Variables

5: pp(1 : H) = lp(1 : H) = 0 (the number of physical/logical

pages assigned to each stream)

6: der(1 : H) (the wa derivative for each stream)

7: tprob =
∑ �Finv

H (streams have an equal write frequency)

� Initialization

8: sort(�Fw) (if needed)

9: for (i = j = 0 ; i < H; i++) do
10: while prob(i) < tprob do
11: prob(i) += �Fw(j ++)
12: log pages(i)++;

13: pp(i) = M ·N
lp(i)

14: der(i) = derivative(WA LRW SW(�Fw(i) , αqlc =
pp(i)
lp(i)))

15: wa = compute WA()

� Optimize space allocation

16: repeat
17: i = rank(min(der)) ; j = rank(max(der))
18: step = optimize space allocation change()

19: pp(i) += step ; pp(j) -= step
20: der(i) = derivative(WA LRW SW(�Fw(i), αqlc =

pp(i)
lp(i)))

21: der(j) = derivative(WA LRW SW(�Fw(i), αqlc =
pp(j)
lp(j)))

22: waold = wa ; wa = compute WA()

23: until |wa− waold| < tol

7) Lower-tier model for heat-aware data segregation: It

is well understood that heat segregation is key to reducing

write amplification [1], [17]. Heat segregation groups data into

streams with similar update frequencies for data placement and

has been implemented in some controllers [3]. We leverage the

algorithm to compute the write amplification for each stream

from [17] and adapt it to the hybrid controller architecture

illustrated in Figures 3(d) and 3(e).

To do so, our new algorithm divides the written pages in

several datasets based on heat, partitions the spare storage

capacity across the datasets, and finally computes the relo-

cation overhead for each dataset. The space allocation is then

iteratively optimized until we determine the minimal cleaning

overhead. Algorithm 7 describes the lower-tier model for heat-

aware data segregation.

D. Computing target metrics

Write performance and write endurance are the main target

metrics being evaluated by the computation module. Write

performance is quantified by first computing the total ex-

pected flash chip busy time to service a user write by taking

into account all the associated internal write operations. The

maximum write throughput can then be estimated from how

many I/Os the SSD can service in parallel. The number of

maximum parallel I/Os supported is a function of the number

of NAND flash devices, dies, packages, and channels. The

expected busy time needed to handle a single flash page is

computed in Algorithm 8.

Algorithm 8 Computation of the average write latency

compute write lat(fw slc, fw qlc, fgc slc, fgc qlc) → [t]

� r, p, e = page read, page program, and block erase latencies

� n = pages per flash block in SLC/QLC mode

1: waslc = 1
1−fgc slc

; waqlc = 1
1−fgc qlc

2: t = fw slc(pslc+ (waslc − 1)(rslc + pslc)+
eslc·waslc

nslc
)

+fw qlc(pqlc+ (waqlc − 1)(rqlc + pqlc)+
eqlc·waqlc

nqlc
)

Device endurance is determined by first computing the

number of useful PECs per block expected to store new data,

excluding the number of PECs wasted due to internal data

movement. The PECs wasted due to internal data movement

can be conceptually viewed as a wear amplification that

depends on the write amplification of each tier, the PECs of

the two modes, and the capacity ratio between the SLC and

QLC modes. Although flash blocks are not expected to have

a uniform endurance (PEC count), established wear leveling

algorithms [2] are able to distribute wear optimally and ensure

that all blocks have a similar lifetime. We further assume

that a SLC/QLC wear leveling mechanism is implemented

that can swap blocks between the two pools if required by

wear leveling. Given that each block has a total PEC budget

that can be used in both the SLC and QLC modes, we can

convert the SLC wear to QLC wear and vice-versa. The

conversion can linear (e.g., ten SLC PECs equal 1 QLC PEC)

or can follow an arbitrary function determined by the particular

NAND flash technology used. The conversion function should

ideally be provided by the chip vendor although it can also

be determined through characterization. For simplicity, we

assume a linear conversion between SLC and QLC wear as

described in Algorithm 9.

Algorithm 9 QLC PEC equivalent endurance

compute endurance(fw slc, fw qlc, fgc slc, fgc qlc) → [pec]

1: waslc = fw slc

1−fgc slc
; waqlc =

fw qlc

1−fgc qlc

2: pec =
pecqlc

waqlc+r·waslc
pecqlc
pecslc

IV. MODELING RESULTS

In this section, we present some of the applications of our

modeling framework. We focus on understanding three critical

design options, namely, the importance of adapting the SLC

tier and SLC occupancy to the current device utilization, the

benefits of using a heat-aware data placement and destage, and

the advantages of bypassing the SLC tier when beneficial.

Device utilization (% of device capacity)

Best SLC caching
Adaptive LRW SLC cache
1% SLC cache
5% SLC cache
10% SLC cache
20% SLC cache
QLC-only baseline

(a) Write endurance.

Device utilization (% of device capacity)

1% SLC cache
5% SLC cache
10% SLC cache
20% SLC cache
Adaptive LRW SLC cache
Best SLC caching
QLC-only baseline

(b) Average write overhead.

Fig. 7. Relative performance of hybrid controller architectures versus a QLC-only controller for uniform random writes.

Methodology. We face two main challenges when present-

ing modeling results. First, the absolute endurance and write

throughput of a hybrid controller depend on the available SSD

hardware resources (i.e., number of flash devices, channels,

interface, etc.). We abstract resource-specific aspects by pre-

senting the endurance of hybrid controllers relative to that of

a QLC-only controller with the same hardware resources. For

write performance, we present the expected chip busy time,

i.e., the cumulative latency of all flash operations in both

modes associated with a single user write. The chip busy

time can then be converted to write throughput based on the

actual SSD hardware resources which determine the maximum

number of parallel I/O operations supported. Second, the

characteristics of a flash technology are generally considered

proprietary information. We resort to using the average values

of publicly known 3D NAND flash characteristics presented in

Table I, and make sure that the target metrics of the modeling

results are robust to changes of the flash technology metrics.

Workloads. It has been shown that real-world workloads

tend to be skewed where the majority of writes target a small

percentage of the user data [3], [20], [21]. To cover a wide

range of workload skews we utilize four types of workloads:

a) a workload with no skew composed of uniform random

writes to the whole dataset (denoted RW 100/100); b) a lightly

skewed workload composed of hot/cold data where 20% of

the user data is updated randomly (RW 100/20); c) a medium

skewed workload following a Zipfian distribution [22] where

20% of the dataset is updated 80% the time (Zipf 80/20); and

d) a highly skewed Zipfian workload where 20% of the dataset

is updated 95% of the time (Zipf 95/20).

Analysis dimensions. The device utilization has a signifi-

cant impact on performance. First, at low utilization, the size of

the SLC tier can be large enough to hold all frequently updated

user data such that the controller achieves SLC-equivalent

endurance and performance. Second, the instantaneous over-

provisioning is high which results in a low write amplification

that is close to one. Therefore, we present all results as

a function of the device utilization to capture the dynamic

controller behavior. We expect the device utilization in typical

enterprise SSD deployments to be in the range of 15− 85%,

with an average utilization of 60%.

A. Importance of adapting the SLC cache size and utilization

Fig. 7 shows the impact of adapting the cache size to the

device utilization. We use a random write workload to compare

three types of controller architectures as we vary the device

utilization. The first controller type uses a fixed-size SLC

cache that is representative of the first generation of hybrid

controllers. We use four different SLC cache sizes (the dotted

lines) where 1%, 5%, 10%, and 20% of the total flash blocks

are statically set to the SLC mode. The second controller type

represents the second generation of hybrid controllers with

adaptive SLC caches that adjust the SLC size to the device

utilization and use a simple LRW destage policy (the brown

line). The third controller type adapts optimally both the SLC

capacity and the SLC utilization (the green line). It represents

the best achievable performance by a hybrid controller that

uses an SLC buffer to store new user data.

We note several trends. First, surprisingly, controllers with

a fixed SLC to QLC ratio provide little benefit. Endurance

and throughput are noticeably improved in only a narrow

device utilization range (0 − 5%), elsewhere both metrics

degrade when compared to a QLC-only controller. When

device utilization is high, the fixed SLC caches turn out to

be significantly worse at steady state compared to QLC-only

and an optimally-sized hybrid controller. The capacity invested

in the SLC tier would be better put to use as extra over-

provisioning for the QLC tier that would significantly reduce

write amplification and therefore improve endurance and write

performance. The SLC tier is still helpful to reduce write

latency as long as data can be destaged fast enough in the

background to QLC, however, either endurance and throughput

are severely impacted or the device capacity is artificially re-

duced. Second, a controller that adapts the SLC size performs

better at both low and high device utilization. The range where

endurance and throughput improve extends to ∼30%, while at

high device utilization endurance and throughput almost match

the behavior of the QLC-only baseline. Third, a controller

that introduces SLC-to-SLC relocations and adapts the SLC

occupancy (Fig. 3(c)) further extends the achieved gains. The

additional improvement is significant, however, it is confined

to the 10− 25% utilization range.

Device utilization (% of device capacity)

Zipf - 95%/20%
Zipf - 80%/20%
RW - 100%/20%
RW - 100%/100%
QLC-only baseline

(a) Write endurance.

Device utilization (% of device capacity)

RW - 100%/100%
RW - 100%/20%
Zipf - 80%/20%
Zipf - 95%/20%

(b) Average write overhead.

Device utilization (%)

W
rit

e
ov

er
he

ad
 (

%
)

Overhead reduction (heat-segregation)
Overhead reduction (hybrid controller)
Remaining overhead

(c) Breakdown of the average write overhead.

Fig. 8. Relative performance of hybrid controller architectures versus a QLC-only controller when increasing write skews.

Overall, we observe that the benefits of hybrid controllers

can be significant – both endurance and write throughput

can be improved by more than an order of magnitude by

the judicious use of an SLC tier. However, the benefits are

limited to a narrow utilization range where the actively written

data mostly fits in the SLC tier. We conclude that accurately

sizing the tiers and the target SLC utilization is key to both

maximizing endurance and performance and also reducing the

drawbacks of a hybrid controller at high device utilization.

B. Importance of heat-aware data placement

As real-world I/O workloads tend to be skewed, modeling

a workload using uniform random writes to the whole address

space is not indicative of the actual controller performance. It

is therefore of great interest to study the expected endurance

and write throughput improvements as a function of write

workload skew. We achieve this by modeling the performance

metrics of a heat-aware adaptive controller (Fig. 3(d)) for var-

ious skewed workloads as a function of the device utilization.

Fig. 8(a) shows the relative endurance improvement of

this hybrid controller over a QLC-only baseline. The QLC-

only controller performs heat-segregation in the same way

and is using the same number of heat streams as the hybrid

controller, therefore all endurance gains are a consequence of

the hybrid controller architecture. As expected, the endurance

and throughput benefits of the hybrid controller increase as

the workload becomes more skewed. However, the endurance

gains are unevenly distributed. For the low utilization range

(0−20%), endurance is improved by 10−20× as the working

set fits into the SLC tier. With increasing utilization, more data

is being destaged to QLC, and we observe a sharp drop for

all workloads. The endurance for the RW 100/20 workload

does not improve significantly if the device utilization is higher

than 50%. However, for the medium-skewed Zipf 80/20 work-

load, we see significant improvements of at least 2× across

the practical utilization range and 50% higher endurance at

maximum device utilization. For the highly-skewed Zipf 95/20

workload, the endurance improvements grow to over 4× over

the practical utilization range.

Fig. 8(b) shows how the write overhead increases (and

therefore how write throughput drops) as a function of the

device utilization. Surprisingly, the write throughput gains are

higher than the endurance gains. We see an improvement of

32− 3× for the Zipf 80/20 and 32− 12× for the Zipf 95/20

workload when comparing them to a controller not using

heat information. The reduction in write overhead can be

attributed to two factors: a) the overall write amplification

reduction achieved by heat segregation in both the SLC and

QLC tiers and b) the decrease in QLC writes due to the hybrid

controller architecture that stores write hot data in SLC. We

break down the write overhead reduction and attribute it to

the two sources. Fig. 8(c) shows that the majority of the

write throughput improvement can be attributed to the hybrid

controller architecture.

These results show that both, write throughput and en-

durance can be significantly improved by leveraging write heat

segregation. It is hence paramount to accurately track heat

information to improve data placement and QLC destages.

C. Impact of flash media evolution

The properties of flash media in the two SLC/QLC modes

(Table I) have a significant impact on the absolute endurance

and write performance metrics. However, it is not immediately

obvious that the relative ratio between the SLC and QLC

metrics changes the performance of the presented controller

architectures. As QLC flash technology is evolving, it is

not unreasonable to expect improvements, for example, due

to the introduction of newer materials, better manufacturing

processes or more accurate read voltage shifting.

As an example, we show the relative endurance gain that can

be achieved when introducing the ability to selectively write

to one of the tiers depending on the workload, write heat,

and device utilization, rather than always writing data first to

the SLC tier (architectures (d) vs. (e) in Fig. 3). The ability

to selectively write data to either tier introduces a significant

amount of complexity and is worth considering only if it

provides measurable benefits as it complicates the internal

data flow. We use the lightly skewed RW 100/20 workload

as it showed little endurance improvement at high device

utilization (see Fig. 9). Each line represents a different ratio

between the supported SLC and QLC program erase cycles.

The experiments presented so far correspond to the brown line

(100, 000 SLC PEC / 1, 150 QLC PEC ≈ 87). At this relative
SLC/QLC endurance ratio there is little benefit from selective

data placement – it only improves endurance by less than

5%. However, as the relative SLC/QLC PEC ratio decreases

(QLC endurance improves relatively to SLC), the selective

data destage leads to higher endurance gains. For example, if

the SLC/QLC PEC ratio is reduced to 10×, then selective

Device utilization (% of device capacity)

R
el

at
iv

e
en

du
ra

nc
e

ga
in

 (
%

) SLC/QLC=5
SLC/QLC=11
SLC/QLC=22
SLC/QLC=43
SLC/QLC=87

Fig. 9. Relative endurance gain by introducing selective tier data placement.

data placement provides up to 25% additional endurance for

an otherwise unfriendly workload.

V. RELATED WORK

Hybrid flash controllers. The two types of existing hybrid

flash controller architectures that have been introduced in

Section I-B are hybrid controllers with a fixed-size SLC

cache [11], [12] and controllers with adaptive SLC caches

[8]–[10], [13], [14]. A more recent trend is to combine flash

and 3DXP memory in the same device [23]. Such a design

suffers from the same problems as fixed-size SLC caches as

they cannot adapt to the workload or device utilization. The

cache will either be too small (and therefore ineffective) or

too big (and therefore needlessly increase cost and reduce

storage density). Nonetheless, our modeling framework can

be used to predict the performance or endurance of such

SSD controller architectures. The only change required to the

modeling framework would be to include a model of a 3DXP

cache, i.e., an upper-tier model that supports in-place updates.

Although not discussed for brevity, we note that the LRW

upper-tier (III-C1) and heat-aware upper-tier model (III-C4)

are easy to adapt to account for the lack of write amplification

when using phase-change memory.

Other hybrid controller designs study the benefits of de-

creasing the bit density in worn-out blocks with the goal of

extending endurance [24], [25]. Similarly, two worn-out pages

can be combined into a single page [26]. As the assignment

of distinct physical parts of flash devices to a pool can lead

to unbalanced wear, a soft-partitioning scheme to balance

the wear of the pools is proposed in [27]. However, such

approaches result in a reduction of the device capacity, a

consequence undesirable in commercial SSDs.

Analytical modeling. Our modeling framework builds

upon previous efforts aimed at understanding and quantifying

write amplification through mathematical models [16]. Ana-

lytical models for computing write amplification for random

workloads were first derived in [17], [19]. The model we

use for computing the relocation rate for arbitrarily skewed

workloads was inspired from [17], [28]. We extend existing

work by introducing new models for the cache tier designs and

propose an improved mathematical model to compute write

amplification for arbitrary workloads.

SSD simulation. Amber [29] and MQSim [30] are SSD

simulation frameworks that enable a much faster prototyping

of new controller designs in a more friendly development

environment that abstracts the constraints imposed when devel-

oping a new FPGA- or ASIC-based flash controller. We view

simulation frameworks as complementary to our modeling

work. A modeling approach is significantly faster than SSD

simulation, both when implementing a new controller design

or when evaluating its workload-depended behavior. For ex-

ample, we estimate the number of data points modeled for

this paper at 1× 106 which took 24 h CPU time to compute,

implying an average modeling latency of less than 50ms for

a dataset > 1TB (the modeling time depends on how many

controller parameters need to be optimized and the workload

type). A fast simulation framework, even when no user data is

stored and many of the SSD details are abstracted, will take at

least a few minutes to complete a single simulation run. This

yields at least three orders of magnitude increase in runtime

or about four CPU years to obtain equivalent results. How-

ever, once an efficient controller design is identified through

modeling, it is advisable to implement a proof-of-concept in

a simulation environment to resolve implementation-specific

details and validate its dynamic performance.

VI. CONCLUSIONS

This paper aims to predict and explain the behavior of

hybrid controller architectures for NAND flash through a mod-

eling framework that estimates the upper bound performance

or endurance. Our modeling framework computes the internal

data movement in an SSD by relying on novel analytical

models that offer both accurate and yet fast predictions. The

data flow is then translated into higher-level metrics that

quantify upper bounds for the overall performance of an SSD,

such as write throughput, latency, or device endurance.

As an example of the capabilities of the framework, we

compare multiple controller architectures and show that there

is a large room to improve the efficiency of the hybrid

controllers used today. We investigate three dimensions for

hybrid controllers. First, we demonstrate the importance of

accurately adjusting the SLC cache size and the SLC oc-

cupancy (amount of data cached in SLC) to the workload

properties and to the device utilization. Second, we show the

importance of accurately tracking and exploiting write heat

information. For real-world workloads, which typically exhibit

a large amount of skew, both write endurance and throughput

can be increased significantly, even when the hot working

set does not fully fit in the SLC tier. Third, we show the

importance of re-considering the controller architecture as the

storage technology improves over time and the relative values

of the SLC and QLC flash metrics shift.

Looking towards the future, the modeling approach pre-

sented is more broadly applicable to other hybrid SSDs or

mixed technology NVM SSDs. For example, the modeling

approach can be used for both prediction of write throughput

for conventional single-mode controllers or prediction of the

behavior of SSDs that combine multiple types of persistent

memory (MRAM, 3DXP, Flash).

REFERENCES

[1] X.-Y. Hu, R. Haas, and E. Eleftheriou, “Container marking: Combining
data placement, garbage collection and wear levelling for flash,” in
Proceedings of the 19th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems,
ser. MASCOTS ’11, Jul. 2011, pp. 237–247. [Online]. Available:
http://dx.doi.org/10.1109/MASCOTS.2011.50

[2] R. A. Pletka and S. Tomić, “Health-binning: Maximizing the
performance and the endurance of consumer-level nand flash,” in
Proceedings of the 9th ACM International on Systems and Storage
Conference, ser. SYSTOR ’16. New York, NY, USA: ACM, 2016,
pp. 4:1–4:10. [Online]. Available: http://doi.acm.org/10.1145/2928275.
2928279

[3] R. Pletka, I. Koltsidas, N. Ioannou, S. Tomić, N. Papandreou, T. Parnell,
H. Pozidis, A. Fry, and T. Fisher, “Management of next-generation
NAND flash to achieve enterprise-level endurance and latency targets,”
ACM Trans. Storage, vol. 14, no. 4, pp. 33:1–33:25, Dec. 2018.
[Online]. Available: http://doi.acm.org/10.1145/3241060

[4] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error
characterization, mitigation, and recovery in flash-memory-based solid-
state drives,” Proc. of the IEEE, vol. 109, pp. 1666–1704, Sep. 2017.

[5] (2018) Toshiba’s 768Gb 3D QLC NAND flash.
[Online]. Available: https://www.anandtech.com/show/11590/
toshiba-768-gb-3d-qlc-nand-flash-memory-1000-p-e-cycles

[6] (2018) Scaling Flash Technology to Meet Application
Demands. [Online]. Available: https://www.anandtech.com/show/13181/
flash-memory-summit-toshiba-keynote-live-blog

[7] Jeff Yang. (2018) Raising QLC Reliability in All-Flash Arrays.
[Online]. Available: https://www.flashmemorysummit.com/English/
Collaterals/Proceedings/2018/20180807 ENST-102-1 Yang.pdf

[8] (2018) Intel 660p SSD. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
product-briefs/660p-series-brief.pdf

[9] (2019) Samsung 860 QVO SSD. [Online]. Available: https://www.
samsung.com/semiconductor/minisite/ssd/product/consumer/860qvo/

[10] (2019) Crucial P1 SSD. [Online]. Available: https://www.crucial.com/
usa/en/storage-ssd-p1

[11] L.-P. Chang, “A hybrid approach to NAND-flash-based solid-state
disks,” IEEE Trans. on Computers, vol. 59, no. 10, pp. 1337–1349,
Oct. 2010. [Online]. Available: http://dx.doi.org/10.1109/TC.2010.14

[12] S. Im and D. Shin, “ComboFTL: Improving performance and lifespan
of MLC flash memory using SLC flash buffer,” J. Syst. Archit.,
vol. 56, no. 12, pp. 641–653, Dec. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.sysarc.2010.09.005

[13] D. Glenn, “Optimized client computing with
dynamic write acceleration,” 2014. [Online]. Available:
https://www.micron.com/∼/media/client/global/documents/products/
technical-marketing-brief/brief ssd dynamic write accel.pdf

[14] M.-C. Yang, Y.-H. Chang, C.-W. Tsao, and C.-Y. Liu, “Utilization-aware
self-tuning design for TLC flash storage devices,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 24, no. 10, pp. 3132–3144, Oct. 2016.
[Online]. Available: https://doi.org/10.1109/TVLSI.2016.2538182

[15] N. Ioannou, K. Kourtis, and I. Koltsidas, “Elevating commodity storage
with the salsa host translation layer,” in IEEE MASCOTS, Sep. 2018.

[16] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” in Proceedings

of SYSTOR 2009: The Israeli Experimental Systems Conference. ACM,
2009, p. 10.

[17] R. Stoica and A. Ailamaki, “Improving flash write performance by using
update frequency,” Proceedings of the VLDB Endowment, vol. 6, no. 9,
pp. 733–744, 2013.

[18] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the
LambertW function,” Advances in Computational Mathematics, vol. 5,
no. 1, pp. 329–359, 1996.

[19] P. Desnoyers, “Analytic modeling of SSD write performance,” in Pro-
ceedings of the 5th Annual International Systems and Storage Confer-
ence. ACM, 2012, p. 12.

[20] Y. Etsion and D. G. Feitelson, “Exploiting core working sets
to filter the L1 cache with random sampling,” IEEE Trans.
Computers, vol. 61, no. 11, pp. 1535–1550, 2012. [Online]. Available:
https://doi.org/10.1109/TC.2011.197

[21] Y. Yang and J. Zhu, “Write skew and zipf distribution: Evidence and
implications,” ACM Trans. Storage, vol. 12, no. 4, pp. 21:1–21:19, Jun.
2016. [Online]. Available: http://doi.acm.org/10.1145/2908557

[22] B. C. Arnold, Pareto distribution. Wiley Online Library, 1985.
[23] (2019) Intel Optane Memory H10 with Solid

State Storage. [Online]. Available: http://www.intel.com/
content/www/us/en/products/docs/memory-storage/optane-memory/
optane-memory-h10-solid-state-storage-brief.html

[24] X. Jimenez, D. Novo, and P. Ienne, “Phœnix: reviving MLC blocks
as SLC to extend NAND flash devices lifetime,” in Proc. of the 2013
Design, Automation and Test in Europe, ser. DATE ’13, Mar. 2013, pp.
226–229. [Online]. Available: https://doi.org/10.7873/DATE.2013.059

[25] E. H. Wilson, M. Jung, and M. T. Kandemir, “ZombieNAND:
Resurrecting dead NAND flash for improved SSD longevity,” in
Proceedings of the 2014 IEEE 22nd International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems, ser. MASCOTS ’14, Sep. 2014, pp. 229–238. [Online].
Available: https://doi.org/10.1109/MASCOTS.2014.37

[26] H.-Y. Lin and J.-W. Hsieh, “HLC: Software-based half-level-cell flash
memory,” in Proceedings of the 2015 Design, Automation and Test
in Europe, ser. DATE ’15, 2015, pp. 936–941. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2755753.2757031

[27] X. Jimenez, D. Novo, and P. Ienne, “Software controlled cell bit-density
to improve nand flash lifetime,” in Proceedings of the 49th Annual
Design Automation Conference. ACM, 2012, pp. 229–234.

[28] Y. Yang and J. Zhu, “Write amplification with write skew,”
in Proceedings of the 2016 IEEE 24th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, ser. MASCOTS ’16, Sep. 2016, pp. 406–411. [Online].
Available: https://doi.org/10.1109/MASCOTS.2016.23

[29] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu,
“MQSim: A framework for enabling realistic studies of modern
multi-queue SSD devices,” in Proc. of the 16th USENIX Conference
on File and Storage Technologies, ser. FAST ’18, Feb. 2018, pp.
49–66. [Online]. Available: https://www.usenix.org/conference/fast18/
presentation/tavakkol

[30] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim,
M. Kandemir, and M. Jung, “Amber: Enabling precise full-system
simulation with detailed modeling of all SSD resources,” in
Proceedings of 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’18, 2018, pp. 469–481. [Online].
Available: https://doi.org/10.1109/MICRO.2018.00045

